B. Suggested Form for Notice of Intent (NOI) for the Remediation General Permit

1. General site information. Please provide the following information about the site:

a) Name of facility/site : McGinn Sunoco Service Station		Facility/site address:				
Location of facility/site : longitude: 71 00' 42.92" latitude: 42 15' 27.37"	Facility SIC code(s): 5541	Street: 627 Newport Avenue				
b) Name of facility/site owner: 627 Newport Ave	nue Trust	Town: Quincy				
Email address of owner: bud1122@hotmail.com		State:	Zip: 02170	County: Norfolk		
Telephone no.of facility/site owner : (781) 749-688	36					
Fax no. of facility/site owner : Address of owner (if different from site):		Owner is (check one): 1. Federal 2. State/Tribal 3. Private_ ✓ 4. other, if so, describe:				
Street:						
Town:	State:	Zip:	County:			
c) Legal name of operator : Environmental Compliance Services, Inc.	Operator tele	ephone no: (781) 246-8897				
1	Operator fax	no.: (781) 246-8950	Operator email: cellis@ecsconsu	Operator email: cellis@ecsconsult.com		
Operator contact name and title: Craig Ellis, Senic	or Project Manager					

Address of opera	ator (if different fr	rom owner):	Street: 607 North Avenue, Suite 11						
Town: Wakefie	eld		State: MA	Zip: 01880	County: Middlesex				
d) Check "yes" or "no" for the following: 1. Has a prior NPDES permit exclusion been granted for the discharge? Yes No, if "yes," number: 2. Has a prior NPDES application (Form 1 & 2C) ever been filed for the discharge? Yes No, if "yes," date and tracking #: 3. Is the discharge a "new discharge" as defined by 40 CFR 122.2? Yes No 4. For sites in Massachusetts, is the discharge covered under the MA Contingency Plan (MCP) and exempt from state permitting? Yes No									
generation of dis If "yes," please 1 1. site identificat 2. permit or licer 3. state agency co	charge? Yes <u>/</u> ist: ion # assigned by ase # assigned: 3-(ontact information	the state of NH or MA: RTN 3-02	150 mber:	f) Is the site/facility covered by any other EPA permit, including: 1. multi-sector storm water general permit? Y N V, if Y, number: 2. phase I or II construction storm water general permit? Y N V, if Y, number: 3. individual NPDES permit? Y N V, if Y, number: 4. any other water quality related permit? Y N V, if Y, number:					
2. Discharge i	nformation. Pleas	se provide information about the di	ischarge, (attachi	ing additional sheets as needed)	including:				
	e e	for which the owner/applicant is sarge - For removal and installation	0 0						
b) Provide the following information about each discharge:	ollowing discharge points: Average flow 0.05 Is maximum flow a design value ? Y N N N N N N N N N N N N N N N N N N								
3) Latitude and longitude of each discharge within 100 feet: pt.1:long. 71 00' 42.92" lat. 42 15' 27.37"; pt.2: long lat; pt.3: long lat; pt.4:long lat; pt.5: long lat; pt.6:long lat; pt.7: long lat; pt.8:long lat; etc.									

4) If hydrostatic testing, total volume of the discharge (gals): N/A	5) Is the discharge intermittent or seasonal? Is discharge ongoing Yes No?
c) Expected dates of discharge (mm/dd/yy): start 12/11/06 e	and 01/09/07
d) Please attach a line drawing or flow schematic showing water fl 1. sources of intake water, 2. contributing flow from the operation,	ow through the facility including: 3. treatment units, and 4. discharge policy and recitive the system schematic attached

3. Contaminant information. In order to complete this section, the applicant will need to take a minimum of one sample of the untreated water and have it analyzed for **all** of the parameters listed in Appendix III. Historical data, (i.e., data taken no more than 2 years prior to the effective date of the permit) may be used if obtained pursuant to: i. Massachusetts' regulations 310 CMR 40.0000, the Massachusetts Contingency Plan ("Chapter 21E"); ii. New Hampshire's Title 50 RSA 485-A: Water Pollution and Waste Disposal or Title 50 RSA 485-C: Groundwater Protection Act; or iii. an EPA permit exclusion letter issued pursuant to 40 CFR 122.3, provided the data was analyzed with test methods that meet the requirements of this permit. Otherwise, a new sample shall be taken and analyzed.

a) Based on the analysis of the sample(s) of the untreated influent, the applicant must check the box of the sub-categories that the potential discharge falls within.

Gasoline Only	VOC Only	Primarily Metals	Urban Fill Sites	Contaminated Sumps	Mixed Contaminants	Aquifer Testing
Fuel Oils (and	VOC with Other	Petroleum with Other	Listed Contaminated	Contaminated Dredge Condensates	Hydrostatic Testing of	Well Development or
Other Oils) only	Contaminants	Contaminants	Sites		Pipelines/Tanks	Rehabilitation

b) Based on the analysis of the untreated influent, the applicant must indicate whether each listed chemical is **believed present** or **believed absent** in the potential discharge. Attach additional sheets as needed.

PARAMETER	Believe Absent	Believe Present	# of Samples	Type of Sample	Analytical Method	Minimum Level (ML) of	Maximum daily value		Avg. daily value	
			(1 min- imum)	(e.g., grab)	Used (method #)	Test Method	concentration (ug/l)	mass (kg)	concentration (ug/l)	mass (kg)
1. Total Suspended Solids		'	1	grab	2540D		2,030,000	552.8	2,030,000	276.6
2. Total Residual Chlorine		~	1	grab	8167	100	555	0.151	555	0.075
3. Total Petroleum Hydrocarbons		~	1	grab	1664	1,000	12600	3.431	12600	1.716
4. Cyanide		~	1	grab	9012A	10	14	0.0038	14	.0019
5. Benzene		~	1	grab	8260B	10	132	0.036	132	0.018
6. Toluene		~	1	grab	8260B	10	251	0.068	251	0.034
7. Ethylbenzene		~	1	grab	8260B	10	93.2	0.025	93.2	0.013
8. (m,p,o) Xylenes		~	1	grab	8260B	20	1,421	0.387	1,421	0.193
9. Total BTEX ⁴		V	1	grab	8260B		1,897	0.517	1,897	0.258

⁴BTEX = Sum of Benzene, Toluene, Ethylbenzene, total Xylenes.

PARAMETER	Believe Absent	Believe Present	# of Samples	Type of Sample (e.g.,	Analytical Method	Minimum Level (ML) of	Maximum daily	value	Avg. daily value	e
			(1 min- imum)	grab)	Used (method #)	Test Method	concentration (ug/l)	mass (kg)	concentration (ug/l)	mass (kg)
10. Ethylene Dibromide (1,2- Dibromo-methane)	~		1	grab	504.1	0.01				
11. Methyl-tert-Butyl Ether (MtBE)		~	1	grab	8260B	10	681	0.185	681	0.093
12. tert-Butyl Alcohol (TBA)		~	1	grab	8260B	100	5,740	1.563	5,740	0.781
13. tert-Amyl Methyl Ether (TAME)		~	1	grab	8260B	10	536	0.146	536	0.073
14. Naphthalene		~	1	grab	8260B	10	47.7	0.013	47.7	0.006
15. Carbon Tetra- chloride	~		1	grab	8260B	10				
16. 1,4 Dichlorobenzene	~		1	grab	8260B	10				
17. 1,2 Dichlorobenzene	~		1	grab	8260B	10				
18. 1,3 Dichlorobenzene	~		1	grab	8260B	10				
19. 1,1 Dichloroethane	~		1	grab	8260B	10				
20. 1,2 Dichloroethane	'		1	grab	8260B	10				
21. 1,1 Dichloroethylene	v		1	grab	8260B	10				
22. cis-1,2 Dichloro- ethylene	~		1	grab	8260B	10				
23. Dichloromethane (Methylene Chloride)	~		1	grab	8260B	100				
24. Tetrachloroethylene	~		1	grab	8260B	10				

PARAMETER	Believe Absent	Believe Present	# of Samples	Type of Sample (e.g.,	Analytical Method Used	Minimum Level (ML) of Test	Maximum daily v	alue	Avg. daily Value	e
			(1 min- imum)	grab)	(method #)	Method	concentration (ug/l)	mass (kg)	concentration (ug/l)	mass (kg)
25. 1,1,1 Trichloroethane	~		1	grab	8260B	10				
26. 1,1,2 Trichloroethane	~		1	grab	8260B	10				
27. Trichloroethylene	~		1	grab	8260B	10				
28. Vinyl Chloride	~		1	grab	8260B	10				
29. Acetone	~		1	grab	8260B	100				
30. 1,4 Dioxane	~		1	grab	8260B	200				
31. Total Phenols	~		1	grab	8270C	5				
32. Pentachlorophenol	~		1	grab	8270C	20				
33. Total Phthalates ⁵ (Phthalate esthers)	>		1	grab	8270C	5				
34. Bis (2-Ethylhexyl) Phthalate [Di- (ethylhexyl) Phthalate]	٧		1	grab	8270C	5				
35. Total Group I Polycyclic Aromatic Hydrocarbons (PAH)	V		1	grab	8270C					
a. Benzo(a) Anthracene	~		1	grab	8270C	5				
b. Benzo(a) Pyrene	~		1	grab	8270C	5				
c. Benzo(b)Fluoranthene	~		1	grab	8270C	5				
d. Benzo(k) Fluoranthene	~		1	grab	8270C	5				
e. Chrysene	~		1	grab	8270C	5				

⁵The sum of individual phthalate compounds.

PARAMETER	Believe Absent	Believe Present	# of Samples	Type of Sample (e.g.,	Analytical Method Used	Minimum Level (ML) of	Maximum daily v	alue	Average daily v	alue
			(1 min- imum)	grab)	(method #)	Test Method	concentration (ug/l)	mass (kg)	concentration (ug/l)	mass (kg)
f. Dibenzo(a,h) anthracene	•		1	grab	8270C	5				
g. Indeno(1,2,3-cd) Pyrene	•		1	grab	8270C	5				
36. Total Group II Polycyclic Aromatic Hydrocarbons (PAH)		~	1	grab	8270					
h. Acenaphthene	~		1	grab	8270C	5				
i. Acenaphthylene	✓		1	grab	8270C	5				
j. Anthracene	~		1	grab	8270C	5				
k. Benzo(ghi) Perylene	~		1	grab	8270C	5				
l. Fluoranthene	~		1	grab	8270C	5				
m. Fluorene	~		1	grab	8270C	5				
n. Naphthalene-		~	1	grab	8270C	5	48.2	0.013	48.2	0.0066
o. Phenanthrene	'		1	grab	8270C	5				
p. Pyrene	V		1	grab	8270C	5				
37. Total Polychlorinated Biphenyls (PCBs)	~		1	grab	608	0.4				
38. Antimony	~									
39. Arsenic		V	1	grab	6010B	2	23.6	0.0064	23.6	0.0032
40. Cadmium		V	1	grab	6020	0.2	9.1	0.0025	9.1	0.0012
41. Chromium III		V	1	grab		5	190	0.052	190	0.026
42. Chromium VI	'		1	grab		25				

PARAMETER	Believe Absent	Believe Present	# of Samples	Type of Sample (e.g.,	Analytical Method	Iethod Level (ML) of Test Method (c	Maximum daily value		Avg. daily value	
			(1 min- imum)	grab)	Used (method #)		concentration (ug/l)	mass (kg)	concentration (ug/l)	mass (kg)
43. Copper		~	1	grab	6010B	2.5	800	0.218	800	0.109
44. Lead		~	1	grab	6020	0.2	478	0.130	478	0.065
45. Mercury		~	1	grab	245.1	0.2	0.2	0.00005	0.2	0.00003
46. Nickel		~	1	grab	6010B	2.5	92.6	0.025	92.6	0.012
47. Selenium		~	1	grab	6020	1.2	2.2	0.0006	2.2	0.0003
48. Silver	~		1	grab	6020	0.8				
49. Zinc		~	1	grab	6010B	2.5	3140	0.855	3140	0.427
50. Iron		~	1	grab	6010B	2.5	72000	19.61	72000	9.80
Other (describe):										

c) For discharges where **metals** are believed present, please fill out the following:

Step 1: Do any of the metals in the influent have a reasonable potential to exceed the effluent limits in Appendix III (i.e., the limits set at zero to five dilutions)? Y N	If yes, which metals? arsenic, cadmium, chromium(III), copper, iron, nickel, lead, zinc
Step 2: For any metals which have reasonable potential to exceed the Appendix III limits, calculate the dilution factor (DF) using the formula in Part I.A.3.c) (step 2) of the NOI instructions or as determined by the State prior to the submission of this NOI. What is the dilution factor for applicable metals? Metals: DF: 2.58	Look up the limit calculated at the corresponding dilution factor in Appendix IV. Do any of the metals in the influent have the potential to exceed the corresponding effluent limits in Appendix IV (i.e., is the influent concentration above the limit set at the calculated dilution factor)? YN If "Yes," list which metals: arsenic, cadmium, chromium(III), copper, iron, nickel, lead, zinc

4. Treatment system informa	ation. Please d	escribe the treatme	ent system using sepa	arate sheets as neces	sary, including:		
a) A description of the treatn	nent system, inc	luding a schemati	c of the proposed or	existing treatment sy	/stem:		
Frac tank followed by liquid	phase granular	activated carbon t	reatment system wit	h bag prefilters. See	attached schematic.		
	1 8						
b) Identify each applicable	Frac. tank	Air stripper	Oil/water s	maratar	Equalization tanks	Bag filter	GAC filter
treatment unit (check all		All suippei	Oll/water s	eparator	Equalization talks	Dag Illei	GAC IIItei
that apply):	'					~	'
	Chlorination	Dechlorination	on Other (plea	se describe):			
c) Proposed average and ma	vimum flow re	otas (gallons per m	vinuta) for the discha	rge and the design f	low rate(s) (gallons par	minuta) of the treat	nant systam
Average flow rate of dischar			rate of treatment sys		Design flow rate of treati		———
d) A description of chemical	additives being	used or planned t	o be used (attach MS	SDS sheets):			
None							
5. Receiving surface water(s)) Planca provid	la information abo	ut the receiving wet	or(s) using saparata	shoots as nocossativ		
•	•						
a) Identify the discharge path	ıway:	Direct	Within facility	Storm drain	River/brook_	Wetlands	Other (describe):
b) Provide a narrative descrip	ption of the disc	charge pathway, in	cluding the name(s)	of the receiving wat	ers:	•	•
Furnace Brook is culverted b	eneath site. Di	scharge will be dir	ectly to Furnace Bro	ok via a manhole lo	cated on the Site. (See F	Figure 2)	
		_	•				

c) Attach a detailed map(s) indicating the site location and location of the outfall to the receiving water: See Figure 2 1. For multiple discharges, number the discharges sequentially. 2. For indirect dischargers, indicate the location of the discharge to the indirect conveyance and the discharge to surface water The map should also include the location and distance to the nearest sanitary sewer as well as the locus of nearby sensitive receptors (based on USGS topographical mapping), such as surface waters, drinking water supplies, and wetland areas.
d) Provide the state water quality classification of the receiving water
e) Provide the reported or calculated seven day-ten year low flow (7Q10) of the receiving water 0.19cfs Please attach any calculation sheets used to support stream flow and dilution calculations. See attached printout from USGS online tool
f) Is the receiving water a listed 303(d) water quality impaired or limited water? Yes No If yes, for which pollutant(s)? Organic Enrichment/ Low Dissolved Oxygen
Is there a TMDL? Yes No If yes, for which pollutant(s)?
6. Results of Consultation with Federal Services: Please provide the following information according to requirements of Part I.B.4 and Appendices II and VII.
a) Are any listed threatened or endangered species, or designated critical habitat, in proximity to the discharge? YesNo Has any consultation with the federal services been completed? Yes \(\bullet \) No or is consultation underway? Yes No What were the results of the consultation with the U.S. Fish and Wildlife Service and/or National Marine Fisheries Service (check one): a "no jeopardy" opinion? \(\bullet \) or written concurrence on a finding that the discharges are not likely to adversely affect any endangered species or critical habitat?
b) Are any historic properties listed or eligible for listing on the National Register of Historic Places located on the facility or site or in proximity to the discharge? Yes No Have any state or tribal historic preservation officer been consulted in this determination (Massachusetts only)? Yes No

Please provide any supplemental information. Attach any analytical data used to support the application. Attach any certification(s) required by the general permit. 1) Endangered species/habitat consultation included use of National Heritage and Endangered Species Program (NHESP) atlases and conversation with US Fish and Wildlife Service New England Field Office. Both sources indicated no know endangered species or critical habitat associated with Furnace Brook. 2) 7Q10 Flow calculated using USGS online tools - see attached printouts 3) Figures attached include Figure 1 - Site Location Map, Figure 2 - Site Plan, and treatment system schematic.	7. Supplemental information. :
and Wildlife Service New England Field Office. Both sources indicated no know endangered species or critical habitat associated with Furnace Brook. 2) 7Q10 Flow calculated using USGS online tools - see attached printouts	Please provide any supplemental information. Attach any analytical data used to support the application. Attach any certification(s) required by the general permit.
	1) Endangered species/habitat consultation included use of National Heritage and Endangered Species Program (NHESP) atlases and conversation with US Fish and Wildlife Service New England Field Office. Both sources indicated no know endangered species or critical habitat associated with Furnace Brook.
3) Figures attached include Figure 1 - Site Location Map, Figure 2 - Site Plan, and treatment system schematic.	2) 7Q10 Flow calculated using USGS online tools - see attached printouts
	3) Figures attached include Figure 1 - Site Location Map, Figure 2 - Site Plan, and treatment system schematic.

I certify under penalty of law that this document and all attachments were prepared under my direction or supervision in accordance with a system designed to assure that qualified personnel properly gather and evaluate the information submitted. Based on my inquiry of the person or persons who manage the system, or those persons directly responsible for gathering the information, I certify that the information submitted is, to the best of my knowledge and belief, true, accurate, and complete. I certify that I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment for knowing violations.
Facility/Site Name:
Operator signature:
Title:
Date:

8. Signature Requirements: The Notice of Intent must be signed by the operator in accordance with the signatory requirements of 40 CFR Section 122.22, including the

following certification:

Streamflow Statistics Report

Date: Wed Nov 15 12:01:40 2006

Latitude: 42.2571 Longitude: -71.011

Measured Basin Characteristics: Drainage Area (square miles): 3.81 Stratified Drift Area (square miles): 1.25 Stream Length (miles): 5.59

Slope (percent): 3.51

Region: 0

Statistic	Estimated streamflow,	90% Predic	ction interval
Otationo	ft ³ /s	Minimum	Maximum
99-percent duration flow	0.19	0.05	0.69
98-percent duration flow	0.28	0.08	0.89
95-percent duration flow	0.44	0.15	1.27
90-percent duration flow	0.75	0.30	1.87
85-percent duration flow	0.92	0.37	2.25
80-percent duration flow	1.22	0.51	2.85
[I	1	1	li

75-percent duration flow	1.33	0.61	2.83
70-percent duration flow	1.70	0.79	3.63
60-percent duration flow	2.71	1.19	6.13
50-percent duration flow	3.74	1.73	8.04
7-day, 2-year low flow	0.42	0.14	1.25
7-day, 10-year low flow	0.19	0.05	0.70
August median flow	0.95	0.37	2.38

U.S. Department of the Interior, U.S. Geological Survey 10 Bearfoot Road Northborough, MA 01532 (508) 490-5000

Maintainer: webmaster@mass1.er.usgs.gov

Environmental Compliance Services, Inc. 607 North Avenue, Wakefield, MA 01880 Phone (781)-246-8897 Fax (781)-246-8950 www.ecsconsult.com

SITE LOCUS

Figure:

McGinn Sunoco Service Station 627 Newport Avenue Quincy, MA 02170

Job Number: 05-207351.00

1 inch = 1500 feet

1 1/2 0 1 Mile

Contour Interval: 3 Meters

North

Base Map: U.S. Geological Survey; Quadrangle Location: Boston South, MA

UTM Coordinates: 19 0334043 East / 46 80124 North

Map Edited: 1987 Map Revised: NA Generated By: JNS

Process Flow Diagram Dewatering Treatment System (Typical)

SERVICE TECH, INC.

Activated Carbon Engineering Sales and Service.

High Pressure Liquid Phase Activated Carbon Adsorbers (75 PSI "HP" Series)

Design Specifications

		Design Sp	ecifications		
MODEL	POUNDS GAC	MAXIMUM FLOW RATE (GPM)	DIMENSIONS DIA, X HT, "A" x "B"	OVERALL HEIGHT	INLET/ OUTLET
HP500-75	500	35	36" x 50"	66"	2**
HP1000-75	1000	50	48" x 48"	66"	2"
HP1000-75	1000	50	36" x 72"	90"	2"
HP2000-75	2000	100	48" x 72"	90"	4"
HP3000-75	3000	145	60" x 72"	108"	4"

MODEL 8 BASKET STRAINER AND BAG FILTERS

Cover Types

150 PSIG Design

300 PSIG Design

Dimensions (IN) 150 PSIG Design

Modei√	Pipe Size	Α	A1	AZ	8	c	D	E	F	G	G1	н	ΗI	L	N
8-15	2	6.6	2.9	2.9	5.9	7.5	21.2	23.5	4.9	21.0	21.0	23.2	23.2	5.0	4.06
	3	7.5	3.7	3.7	6.8	7.5	22.5	24.6	6.6	21.9	21.9	25.4	25.4	7.25	6.12
	4	7.5	3.7	5.0	6.8	8.6	22.5	25.1	8.4	21.9	20.6	26.8	25.6	9.0	7.75
	6	9.0	5.2	5.9	7.1	8.6	23.6	26.0	9.0	23.4	22.8	30.9	30.3	12.5	11.0
8-30	7	6.6	2.8	2.9	5.9	7.5	36.2	38.5	4.9	36.0	36.0	38.2	38.2	5.0	4.06
	3	7.5	3.7	3.7	6.7	7.5	37.5	39.6	6.6	36.9	36.9	40.4	40.4	7.25	6.12
	4	7.5	3.7	5.0	6.7	8.6	37.5	40.1	8.4	36.9	35.6	41.8	40.6	9.0	7 75
	6	9.0	5.2	5.9	7.1	8.6	38.6	41.0	9.0	38.4	37.8	45.9	45.3	12.5	11.0

Dimensions (IN) 300 PSIG Design

Model	Pipe Size	, A	A1/A2	B	c	D	Ε	F	G/G1	H/H1	L	N
8-15	Z:	7.6	3.8	5.9	7.5	21.2	23.5	4.9	21.0	23.2	5.0	4.06
	3	8.9	5.0	6.8	8.6	22.5	24.6	6.6	21.9	2:5.4	7.25	6.12
	4	8.9	5.0	6.8	9.6	22.5	25.1	8.4	21.9	26.8	9.0	7.75
	6	10.1	6.2	6.3	10.0	23.6	26.0	9.0	23.4	30.9	12.5	11.0
8-30	2	7.6	3.8	5.9	7.5	36.0	38.5	4.9	36.0	38.2	5.0	4.06
	3	8.9	5.0	6.8	7,5	36.7	39.6	6.6	36.9	40.4	7.25	6.12
	4	8.9	5.0	8.ک	8.6	36.5	40.1	8.4	36.9	41.8	9.0	7.75
	Ġ	10.1	6.2	7.1	8.6	38.6	41.0	9.0	38.4	45.9	12.5	11.0
											—	

HIGH CAPACITY FILTER BAG

Pressure Drop Data

The graph shows pressure drop through clean filter bag media of various micron ratings. The curves do not consider pressure drop through the filter housing.

Bag Size Correction

To obtain pressure drop correction for a specific bag size, divide the pressure drop obtained from the graph by the area of the bag

Viscosity Correction

If viscosity is higher than one, multiply the corrected pressure drop as obtained above by the appropriate viscosity correction factor.

Bag Size	Surface Area (sq. ft.)	Viscosity (cps)	Correction Factor
		50	4.5
1	i .	100	8.3
] 1	2.0	200	16.6
I (inner)	1.6	400	27.7
2	4.4	800	50.0
2 (inner)	3.6	1000	56.2
3	0.5	1500	77.2
4	1.0	2000	113.6
7	1.8	4000	161.0
8	2.0	6000	250.0
9	3.4	8000	325.0
12	5.6	10000	430.0

Standard Fibers And Micron Ratings Available Micron Ratings

Construction	Fiber	1	3	5	10	15	25	50	75	100	125	150	175	200	250	300	400	600 8	00
Felts	Polyester Oil-Adsorb (pp) Polypropylene Nornex (Nylon) Tefon®	•			:	¥	:	:	•	 :				•					_
Multifilament Meshes Monofilament Meshes	Polyester Nylon Polypropylene Nylon								•	:						:		:	:

Compatibility and Temperature Limits For Standard Bag Materials* Compatibility With

Fiber	Organic Solvents	Animal Vegetable & Petro Oils	Micro- Organisms	Alkalies	Organic Acids	Oxidizing Agents	Mineral Acids	Temperature Limitations (max. deg. F)
Polyester	Excellent	Excellent	Excellent	Good	Good	Good	Good	325
Polypropylene	Excellent	Excellent	Excellent	Excellent	Excellent	Good	Good	225
Nylon	Excellent	Excellent	Excellent	Good	Fair	Poor	Poor	325
Nomex Nylon	Excellent	Excellent	Excellent	Good	Fair	Poor	Poor	450
ieflon	Excellent	Excellent	Excellent	Excellent	Excellent	Excellent	Excellent	500
 Chant is to be used as 	a goide. User shou	ild make tests with specifi	c media to assum comp	arbuilty				

Filter Bag Sizes							
Used on Rosedale Model No.	Bag Size	Length (inches)	Diameter (inches)	Surface Area (sq. ft.)	Bag Volume (gallons)		
16	3		4.12		0.5		
4-12	4	14	4.17	1.0	1.0		
6-12	7	15	5.62	1.3	1.3		
6-18	8	21	5.62	2,0	1.5		
6-30	9	32	5.62	3 4	2.8		
8-15	Ī	16.5	7.06	2.0	2.0		
	1 (inner)	14.5	5.75	1.6	1.7		
8-30	2 ,,	32	7.06	4.4	4.6		
and 16 thru 36	2 (inner)	30	5.75	3.6	3.8		
LCO	12	32	8.37	5.6	6.0		

Report Date: 27-Nov-06 16:12

\checkmark	Final Report
	Re-Issued Report
	Revised Report

Laboratory Report

Environmental Compliance Services 607 North Avenue; Suite 11 Wakefield, MA 01880

Attn: Craig Ellis

Project: 627 Newport Ave. - Quincy, MA

Project 95-207351.00

Laboratory ID	Client Sample ID	<u>Matrix</u>	Date Sampled	Date Received
SA54478-01	Trip Blank	Ground Water	20-Nov-06 00:00	21-Nov-06 12:40
SA54478-02	MW-1	Ground Water	20-Nov-06 12:00	21-Nov-06 12:40
SA54478-03	MW-3	Ground Water	20-Nov-06 11:00	21-Nov-06 12:40
SA54478-04	MW-101	Ground Water	20-Nov-06 10:30	21-Nov-06 12:40
SA54478-05	MW-102	Ground Water	20-Nov-06 10:00	21-Nov-06 12:40
SA54478-06	MW-103	Ground Water	20-Nov-06 11:30	21-Nov-06 12:40
SA54478-07	MW-2	Ground Water	20-Nov-06 12:30	21-Nov-06 12:40

I attest that the information contained within the report has been reviewed for accuracy and checked against the quality control requirements for each method. These results relate only to the sample(s) as received.

All applicable NELAC requirements have been met.

Please note that this report contains 32 pages of analytical data plus Chain of Custody document(s).

This report may not be reproduced, except in full, without written approval from Spectrum Analytical, Inc.

 $Mass a chusetts \ Certification \ \# \ M-MA138/MA1110$

Connecticut # PH-0777 Florida # E87600/E87936 Maine # MA138

New Hampshire # 2538/2972 New Jersey # MA011/MA012 New York # 11393/11840

Rhode Island # 98 USDA # S-51435

Vermont # VT-11393

Authorized by:

Hanibal C. Tayeh, Ph.D. President/Laboratory Director

Spectrum Analytical, Inc. is a NELAC accredited laboratory organization and meets NELAC testing standards. Use of the NELAC logo however does not insure that Spectrum is currently accredited for the specific method or analyte indicated. Please refer to our "Quality" web page at www.spectrum-analytical.com for a full listing of our current certifications and fields of accreditation. States in which Spectrum Analytical, Inc. holds NELAC certification are New York, New Hampshire, New Jersey and Florida. All analytical work for Volatile Organic and Air analysis are transferred to and conducted at our 830 Silver Street location (NY-11840, FL-E87936 and NY-MA012).

CASE NARRATIVE:

The data set for work order SA54478 complies with internal QC criteria for the methods performed.

The samples were received @ 6.0 degrees Celsius. An infrared thermometer with a tolerance of \pm 2.0 degrees Celsius was used immediately upon receipt of the samples.

MADEP has published a list of analytical methods (CAM) which provides a series of recommended protocols for the acquisition, analysis and reporting of analytical data in support of MCP decisions. "Presumptive Certainty" can be established only for those methods published by the MADEP in the MCP CAM. The compounds and/or elements reported were specifically requested by the client on the Chain of Custody and in some cases may not include the full analyte list as defined in the method.

According to WSC-CAM 5/2004 Rev.4, Table 11 A-1, recovery for some VOC analytes have been deemed potentially difficult. Although they may still be within the recommended 70%-130% recovery range, a range has been set based on historical control limits.

Please refer to "Notes and Definitions" for all sample/analyte qualifiers. Qualifiers will narrate any non-conformances and issues relating to quality control samples and/or sample analysis/matrix.

Sample Identification Trip Blank SA54478-01

Client Project # 95-207351.00

<u>Matrix</u> Ground Water Collection Date/Time 20-Nov-06 00:00

CAS No.	Analyte(s)	Result	Flag	Units	*RDL	Dilution	Method Ref.	Prepared	Analyzed	Batch	Analyst
Volatile	Organic Compounds										
VPH Aliph	atic/Aromatic Carbon Ranges										
Prepare	d by method VPH										
	C5-C8 Aliphatic Hydrocarbons	BRL		mg/l	0.0750	1	+MADEP 5/2004 Rev.	22-Nov-06	22-Nov-06	6111630	EQ
	. ,						1.1				
	C9-C12 Aliphatic Hydrocarbons	BRL		mg/l	0.0250	1			"		
	C9-C10 Aromatic Hydrocarbons	BRL		mg/l	0.0250	1					
	Unadjusted C5-C8 Aliphatic	BRL		mg/l	0.0750	1					
	Hydrocarbons										
	Unadjusted C9-C12 Aliphatic	BRL		mg/l	0.0250	1			"		
	Hydrocarbons										
	et Analytes										
Prepare	d by method VPH										
71-43-2	Benzene	BRL		μg/l	5.0	1					
100-41-4	Ethylbenzene	BRL		μg/l	5.0	1					
1634-04-4	Methyl tert-butyl ether	BRL		μg/l	5.0	1					
91-20-3	Naphthalene	BRL		μg/l	5.0	1					
108-88-3	Toluene	BRL		μg/l	5.0	1					
1330-20-7	m,p-Xylene	BRL		μg/l	10.0	1					
95-47-6	o-Xylene	BRL		μg/l	5.0	1					•
Surrogate r	ecoveries:	<u> </u>									
615-59-8	2,5-Dibromotoluene (FID)	103		70-130	%						
615-59-8	2,5-Dibromotoluene (PID)	106		70-130	%						

Sample Identification MW-1 SA54478-02

Client Project # 95-207351.00

<u>Matrix</u> Ground Water Collection Date/Time 20-Nov-06 12:00

CAS No.	Analyte(s)	Result	Flag	Units	*RDL	Dilution	Method Ref.	Prepared	Analyzed	Batch	Analyst
Volatile (Organic Compounds										
VPH Aliph	atic/Aromatic Carbon Ranges										
Prepare	d by method VPH										
	C5-C8 Aliphatic Hydrocarbons	0.583		mg/l	0.0750	5	+MADEP 5/2004 Rev.	22-Nov-06	22-Nov-06	6111630	EQ
	. ,						1.1				
	C9-C12 Aliphatic Hydrocarbons	0.103		mg/l	0.0250	5			"		
	C9-C10 Aromatic Hydrocarbons	0.198		mg/l	0.0250	5					
	Unadjusted C5-C8 Aliphatic	0.594		mg/l	0.0750	5					
	Hydrocarbons										
	Unadjusted C9-C12 Aliphatic	0.300		mg/l	0.0250	5					
	Hydrocarbons										
	et Analytes										
Prepare	d by method VPH										
71-43-2	Benzene	5.9		μg/l	5.0	5					
100-41-4	Ethylbenzene	BRL		μg/l	5.0	5					
1634-04-4	Methyl tert-butyl ether	BRL		μg/l	5.0	5					
91-20-3	Naphthalene	34.7		μg/l	5.0	5					
108-88-3	Toluene	BRL		μg/l	5.0	5					
1330-20-7	m,p-Xylene	BRL		μg/l	10.0	5					
95-47-6	o-Xylene	BRL		μg/l	5.0	5					
Surrogate re	ecoveries:										
615-59-8	2,5-Dibromotoluene (FID)	92.6		70-130	%						
615-59-8	2,5-Dibromotoluene (PID)	94.6		70-130	%						

Sample Identification MW-3
SA54478-03

Client Project # 95-207351.00

<u>Matrix</u> Ground Water Collection Date/Time 20-Nov-06 11:00

CAS No.	Analyte(s)	Result	Flag	Units	*RDL	Dilution	Method Ref.	Prepared	Analyzed	Batch	Analyst
Volatile	Organic Compounds										
VPH Aliph	atic/Aromatic Carbon Ranges										
Prepare	d by method VPH										
	C5-C8 Aliphatic Hydrocarbons	BRL		mg/l	0.0750	5	+MADEP 5/2004 Rev.	22-Nov-06	22-Nov-06	6111630	EQ
	. ,						1.1				
	C9-C12 Aliphatic Hydrocarbons	BRL		mg/l	0.0250	5			"		
	C9-C10 Aromatic Hydrocarbons	BRL		mg/l	0.0250	5					
	Unadjusted C5-C8 Aliphatic	BRL		mg/l	0.0750	5					
	Hydrocarbons										
	Unadjusted C9-C12 Aliphatic	BRL		mg/l	0.0250	5					
	Hydrocarbons										
	et Analytes										
Prepare	d by method VPH										
71-43-2	Benzene	BRL		μg/l	5.0	5					
100-41-4	Ethylbenzene	BRL		μg/l	5.0	5					
1634-04-4	Methyl tert-butyl ether	BRL		μg/l	5.0	5					
91-20-3	Naphthalene	BRL		μg/l	5.0	5					
108-88-3	Toluene	BRL		μg/l	5.0	5					
1330-20-7	m,p-Xylene	BRL		μg/l	10.0	5					
95-47-6	o-Xylene	BRL		μg/l	5.0	5					
Surrogate r	ecoveries:										
615-59-8	2,5-Dibromotoluene (FID)	87.2		70-130	%						
615-59-8	2,5-Dibromotoluene (PID)	88.6		70-130	%						

Sample Identification MW-101 SA54478-04

Client Project # 95-207351.00

<u>Matrix</u> Ground Water Collection Date/Time 20-Nov-06 10:30

CAS No.	Analyte(s)	Result	Flag	Units	*RDL	Dilution	Method Ref.	Prepared	Analyzed	Batch	Analyst
Volatile	Organic Compounds										
VPH Aliph	atic/Aromatic Carbon Ranges										
Prepare	d by method VPH										
	C5-C8 Aliphatic Hydrocarbons	2.62		mg/l	0.750	50	+MADEP 5/2004 Rev.	22-Nov-06	22-Nov-06	6111630	EQ
	C9-C12 Aliphatic Hydrocarbons	1.17		mg/l	0.250	50	1.1				
	C9-C10 Aromatic Hydrocarbons	2.38		mg/l	0.250	50					
	Unadjusted C5-C8 Aliphatic	12.5		mg/l	0.750	50					
	Hydrocarbons	12.0		mgn	0.700	00					
	Unadjusted C9-C12 Aliphatic	3.55		mg/l	0.250	50					
	Hydrocarbons										
VPH Targ	et Analytes										
Prepare	d by method VPH										
71-43-2	Benzene	716		μg/l	50.0	50					
100-41-4	Ethylbenzene	67.8		μg/l	50.0	50					
1634-04-4	Methyl tert-butyl ether	6,060		μg/l	50.0	50					
91-20-3	Naphthalene	129		μg/l	50.0	50					
108-88-3	Toluene	1,030		μg/l	50.0	50					
1330-20-7	m,p-Xylene	1,370		μg/l	100	50					
95-47-6	o-Xylene	660		μg/l	50.0	50					
Surrogate r	ecoveries:										
615-59-8	2,5-Dibromotoluene (FID)	80.6		70-130	%						
615-59-8	2,5-Dibromotoluene (PID)	78.2		70-130	%						

Sample Identification MW-102 SA54478-05

Client Project # 95-207351.00

<u>Matrix</u> Ground Water Collection Date/Time 20-Nov-06 10:00

CAS No.	Analyte(s)	Result	Flag	Units	*RDL	Dilution	Method Ref.	Prepared	Analyzed	Batch	Analyst
Volatile	Organic Compounds										
VPH Aliph	atic/Aromatic Carbon Ranges										
Prepare	d by method VPH										
	C5-C8 Aliphatic Hydrocarbons	BRL		mg/l	0.0750	5	+MADEP 5/2004 Rev.	22-Nov-06	22-Nov-06	6111630	EQ
	C9-C12 Aliphatic Hydrocarbons	BRL		mg/l	0.0250	5	1.1				
	C9-C10 Aromatic Hydrocarbons	BRL		mg/l	0.0250	5					
	Unadjusted C5-C8 Aliphatic Hydrocarbons	BRL		mg/l	0.0750	5					
VPH Targe	Unadjusted C9-C12 Aliphatic Hydrocarbons et Analytes	BRL		mg/l	0.0250	5					
	d by method VPH										
71-43-2	Benzene	BRL		μg/l	5.0	5					
100-41-4	Ethylbenzene	BRL		μg/l	5.0	5					
1634-04-4	Methyl tert-butyl ether	43.1		μg/l	5.0	5					
91-20-3	Naphthalene	7.1		μg/l	5.0	5					
108-88-3	Toluene	BRL		μg/l	5.0	5					
1330-20-7	m,p-Xylene	BRL		μg/l	10.0	5					
95-47-6	o-Xylene	BRL		μg/l	5.0	5					
Surrogate re	ecoveries:	<u> </u>									
615-59-8	2,5-Dibromotoluene (FID)	86.0		70-130	%						
615-59-8	2,5-Dibromotoluene (PID)	87.2		70-130	%						

Sample Identification MW-103 SA54478-06

Client Project # 95-207351.00

<u>Matrix</u> Ground Water Collection Date/Time 20-Nov-06 11:30

CAS No.	Analyte(s)	Result	Flag	Units	*RDL	Dilution	Method Ref.	Prepared	Analyzed	Batch	Analyst
Volatile	Organic Compounds										
VPH Aliph	atic/Aromatic Carbon Ranges										
Prepare	d by method VPH										
	C5-C8 Aliphatic Hydrocarbons	0.510		mg/l	0.0750	5	+MADEP 5/2004 Rev. 1.1	22-Nov-06	22-Nov-06	6111630	EQ
	C9-C12 Aliphatic Hydrocarbons	0.142		mg/l	0.0250	5					
	C9-C10 Aromatic Hydrocarbons	0.434		mg/l	0.0250	5					
	Unadjusted C5-C8 Aliphatic Hydrocarbons	1.23		mg/l	0.0750	5	н				
VPH Tarm	Unadjusted C9-C12 Aliphatic Hydrocarbons et Analytes	0.575		mg/l	0.0250	5	•				
	d by method VPH										
71-43-2	Benzene	63.8		μg/l	5.0	5					
100-41-4	Ethylbenzene	73.5		μg/l	5.0	5					
1634-04-4	Methyl tert-butyl ether	56.6		μg/l	5.0	5					
91-20-3	Naphthalene	22.7		μg/l	5.0	5					
108-88-3	Toluene	122		μg/l	5.0	5					
1330-20-7	m,p-Xylene	295		μg/l	10.0	5					
95-47-6	o-Xylene	105		μg/l	5.0	5	п		п		
Surrogate r	ecoveries:										
615-59-8	2,5-Dibromotoluene (FID)	82.8		70-130	%						
615-59-8	2,5-Dibromotoluene (PID)	83.6		70-130	%						

Client Project # 95-207351.00

<u>Matrix</u> Ground Water Collection Date/Time 20-Nov-06 12:30

CAS No.	Analyte(s)	Result	Flag	Units	*RDL	Dilution	Method Ref.	Prepared	Analyzed	Batch	Analyst
Volatile (Organic Compounds										
	ganic Compounds										
Prepared	d by method SW846 5030 Wate	r MS									
76-13-1	1,1,2-Trichlorotrifluoroethane (Freon 113)	BRL		μg/l	10.0	10	SW 846 8260B	21-Nov-06	22-Nov-06	6111585	RLJ
67-64-1	Acetone	BRL		μg/l	100	10					
107-13-1	Acrylonitrile	BRL		μg/l	10.0	10					
71-43-2	Benzene	132		μg/l	10.0	10			"		
108-86-1	Bromobenzene	BRL		μg/l	10.0	10					
74-97-5	Bromochloromethane	BRL		μg/l	10.0	10			"		
75-27-4	Bromodichloromethane	BRL		μg/l	10.0	10			"		
75-25-2	Bromoform	BRL		μg/l	10.0	10					
74-83-9	Bromomethane	BRL		μg/l	20.0	10					
78-93-3	2-Butanone (MEK)	BRL		μg/l	100	10					
104-51-8	n-Butylbenzene	BRL		μg/l	10.0	10					
135-98-8	sec-Butylbenzene	BRL		μg/l	10.0	10					
98-06-6	tert-Butylbenzene	BRL		μg/l	10.0	10					
75-15-0	Carbon disulfide	BRL		μg/l	50.0	10			"		
56-23-5	Carbon tetrachloride	BRL		μg/l	10.0	10					
108-90-7	Chlorobenzene	BRL		μg/l	10.0	10			"		
75-00-3	Chloroethane	BRL		μg/l	20.0	10			"		
67-66-3	Chloroform	BRL		μg/l	10.0	10					
74-87-3	Chloromethane	BRL		μg/l	20.0	10			"		
95-49-8	2-Chlorotoluene	BRL		μg/l	10.0	10					
106-43-4	4-Chlorotoluene	BRL		μg/l	10.0	10					
96-12-8	1,2-Dibromo-3-chloropropane	BRL		μg/l	20.0	10					
124-48-1	Dibromochloromethane	BRL		μg/l	10.0	10					
106-93-4	1,2-Dibromoethane (EDB)	BRL		μg/l	10.0	10					
74-95-3	Dibromomethane	BRL		μg/l	10.0	10					
95-50-1	1,2-Dichlorobenzene	BRL		μg/l	10.0	10					
541-73-1	1,3-Dichlorobenzene	BRL		μg/l	10.0	10					
106-46-7	1,4-Dichlorobenzene	BRL		μg/l	10.0	10					
75-71-8	Dichlorodifluoromethane (Freon12)	BRL		μg/l	20.0	10					
75-34-3	1,1-Dichloroethane	BRL		μg/l	10.0	10					
107-06-2	1,2-Dichloroethane	BRL		μg/l	10.0	10					
75-35-4	1,1-Dichloroethene	BRL		μg/l	10.0	10					
156-59-2	cis-1,2-Dichloroethene	BRL		μg/l	10.0	10					
156-60-5	trans-1,2-Dichloroethene	BRL		μg/l	10.0	10					
78-87-5	1,2-Dichloropropane	BRL		μg/l	10.0	10					
142-28-9	1,3-Dichloropropane	BRL		μg/l	10.0	10					
594-20-7	2,2-Dichloropropane	BRL		μg/l	10.0	10					
563-58-6	1,1-Dichloropropene	BRL		μg/l	10.0	10					
10061-01-5	cis-1,3-Dichloropropene	BRL		μg/l	10.0	10					
10061-02-6	trans-1,3-Dichloropropene	BRL		μg/l	10.0	10					
100-41-4	Ethylbenzene	93.2		μg/l	10.0	10					
87-68-3	Hexachlorobutadiene	BRL		μg/l	10.0	10					
591-78-6	2-Hexanone (MBK)	BRL		μg/l	100	10					
98-82-8	Isopropylbenzene	BRL		μg/l	10.0	10					
99-87-6	4-Isopropyltoluene	BRL		μg/l	10.0	10					
1634-04-4	Methyl tert-butyl ether	681		μg/l	10.0	10					
108-10-1	4-Methyl-2-pentanone (MIBK)	BRL		μg/l	100	10					
75-09-2	Methylene chloride	BRL		μg/l	100	10					
	•			μg/l	10.0	10					

Surrogate recoveries:

Client Project # 95-207351.00

<u>Matrix</u> Ground Water Collection Date/Time 20-Nov-06 12:30

CAS No.	Analyte(s)	Result	Flag	Units	*RDL	Dilution	Method Ref.	Prepared	Analyzed	Batch	Analysi
Volatile (Organic Compounds										
	ganic Compounds										
Prepared	d by method SW846 5030 Water	er MS									
103-65-1	n-Propylbenzene	18.7		μg/l	10.0	10	SW 846 8260B	21-Nov-06	22-Nov-06	6111585	RLJ
100-42-5	Styrene	BRL		μg/l	10.0	10					
30-20-6	1,1,2-Tetrachloroethane	BRL		μg/l	10.0	10					
79-34-5	1,1,2,2-Tetrachloroethane	BRL		μg/l	10.0	10					
127-18-4	Tetrachloroethene	BRL		μg/l	10.0	10					
108-88-3	Toluene	251		μg/l	10.0	10					
87-61-6	1,2,3-Trichlorobenzene	BRL		μg/l	10.0	10					
120-82-1	1,2,4-Trichlorobenzene	BRL		μg/l	10.0	10					
71-55-6	1,1,1-Trichloroethane	BRL		μg/l	10.0	10					
79-00-5	1,1,2-Trichloroethane	BRL		μg/l	10.0	10					
79-01-6	Trichloroethene	BRL		μg/l	10.0	10					
75-69-4	Trichlorofluoromethane (Freon 11)	BRL		μg/l	10.0	10					
96-18-4	1,2,3-Trichloropropane	BRL		μg/l	10.0	10					
95-63-6	1,2,4-Trimethylbenzene	745		μg/l	10.0	10					
108-67-8	1,3,5-Trimethylbenzene	344		μg/l	10.0	10					
75-01-4	Vinyl chloride	BRL		μg/l	10.0	10					
1330-20-7	m,p-Xylene	955		μg/l	20.0	10					
95-47-6	o-Xylene	466		μg/l	10.0	10					
109-99-9	Tetrahydrofuran	BRL		μg/l	100	10					
60-29-7	Ethyl ether	BRL		μg/l	10.0	10					
994-05-8	Tert-amyl methyl ether	536		μg/l	10.0	10					
637-92-3	Ethyl tert-butyl ether	BRL		μg/l	10.0	10					
108-20-3	Di-isopropyl ether	BRL		μg/l	10.0	10					
75-65-0	Tert-Butanol / butyl alcohol	5,740		μg/l	100	10					
123-91-1	1,4-Dioxane	BRL		μg/l	200	10					
Surrogate re											
460-00-4	4-Bromofluorobenzene	98.0		70-130	%						
2037-26-5	Toluene-d8	92.0		70-130							
17060-07-0	1,2-Dichloroethane-d4	95.6		70-130							
1868-53-7	Dibromofluoromethane	92.8		70-130							
	atic/Aromatic Carbon Ranges	02.0		70 100	,,,						
	d by method VPH										
Герагес	-	0.44			0.0750	-		00 Nov. 00	00 N 00	0111000	F0
	C5-C8 Aliphatic Hydrocarbons	3.14		mg/l	0.0750	5	+MADEP 5/2004 Rev. 1.1	22-Nov-06	22-Nov-06	6111630	EQ
	C9-C12 Aliphatic Hydrocarbons	1.55		mg/l	0.0250	5	1.1				
	C9-C10 Aromatic Hydrocarbons	3.80		mg/l	0.0250	5					
	Unadjusted C5-C8 Aliphatic	5.67		mg/l	0.0750	5					
	Hydrocarbons	0.07		9.							
	Unadjusted C9-C12 Aliphatic	5.34		mg/l	0.0250	5					
	Hydrocarbons										
VPH Targe											
Prepared	d by method VPH										
71-43-2	Benzene	173		μg/l	5.0	5					
100-41-4	Ethylbenzene	74.2		μg/l	5.0	5					
1634-04-4	Methyl tert-butyl ether	804		μg/l	5.0	5					
91-20-3	Naphthalene	163		μg/l	5.0	5					
108-88-3	Toluene	288		μg/l	5.0	5					
		814		μg/l	10.0	5					
1330-20-7	m,p-Xylene	017		P9/1	10.0	0					

Client Project # 95-207351.00

<u>Matrix</u> Ground Water Collection Date/Time 20-Nov-06 12:30

	Analyte(s)	Result	Flag	Units	*RDL	Dilution	Method Ref.	Prepared	Analyzed	Batch	Analys
Volatile (Organic Compounds										
/PH Targe	et Analytes										
Prepared	d by method VPH										
615-59-8	2,5-Dibromotoluene (FID)	91.6		70-130	%		+MADEP 5/2004 Rev.	22-Nov-06	22-Nov-06	6111630	EQ
							1.1				
615-59-8	2,5-Dibromotoluene (PID)	93.2		70-130	%			•			
Microext	ractable Organic Compounds										
106-93-4	1,2-Dibromoethane (EDB)	BRL		μg/l	0.0100	1	EPA 504.1	21-Nov-06	22-Nov-06	6111557	mp
Extractal	ble Petroleum Hydrocarbons										
	Non-polar material (SGT-HEM)	12.6		mg/l	1.0	1	EPA 1664	21-Nov-06	22-Nov-06	6111573	DS
Semivola	tile Organic Compounds by GC	!									
	ated Biphenyls by EPA 608										
	d by method SW846 3535										
	-	PDI.		ua/l	0.400	4	EDA 600	21-Nov-06	01 Nov 06	6111400	CM
2674-11-2 1104-28-2	PCB 1016	BRL BRL		μg/l	0.400 0.400	1	EPA 608	21-NOV-U6	21-Nov-06	6111490	SM "
1141-16-5	PCB 1221	BRL		μg/l μg/l	0.400	1					
3469-21-9	PCB 1232 PCB 1242	BRL		μg/I μg/I	0.400	1					
2672-29-6	PCB 1242 PCB 1248	BRL		μg/l	0.400	1					
1097-69-1	PCB 1254	BRL		μg/l	0.400	1					
1096-82-5	PCB 1260	BRL		μg/l	0.400	1					
7324-23-5	PCB 1262	BRL		μg/l	0.400	1					
1100-14-4	PCB 1268	BRL		μg/l	0.400	1					
		Dite		r9·	000	•					
Surrogate re		55.0		20.150	n/						
0386-84-2	4,4-DB-Octafluorobiphenyl (Sr)	55.0 55.0		30-150 ° 30-150 °							
2051-24-3	Decachlorobiphenyl (Sr)			00-100	/0						
	tile Organic Compounds by GC										
	e Organic Compounds by SW846 827	<u>'0C</u>									
Prepared											
	d by method SW846 3510C										
3-32-9	Acenaphthene	BRL		μg/l	5.00	1	SW846 8270C	21-Nov-06	21-Nov-06	6111492	M.B
	-	BRL BRL		μg/l μg/l	5.00 5.00	1	SW846 8270C	21-Nov-06	21-Nov-06	6111492	M.B
08-96-8	Acenaphthene						SW846 8270C		21-Nov-06	6111492	
08-96-8 2-53-3	Acenaphthene Acenaphthylene	BRL		μg/l	5.00	1	SW846 8270C " "		21-Nov-06	6111492	
08-96-8 2-53-3 20-12-7	Acenaphthene Acenaphthylene Aniline	BRL BRL		μg/l μg/l	5.00 5.00	1 1	SW846 8270C " " "		21-Nov-06	6111492	
08-96-8 2-53-3 20-12-7 912-24-9	Acenaphthene Acenaphthylene Aniline Anthracene	BRL BRL BRL BRL BRL		µg/I µg/I µg/I	5.00 5.00 5.00	1 1 1	SW846 8270C " " " " "		21-Nov-06	6111492	
08-96-8 2-53-3 20-12-7 912-24-9 03-33-3	Acenaphthene Acenaphthylene Aniline Anthracene Atrazine	BRL BRL BRL BRL BRL		µg/I µg/I µg/I µg/I µg/I	5.00 5.00 5.00 5.00 5.00 5.00	1 1 1	SW846 8270C		21-Nov-06	6111492	
08-96-8 2-53-3 20-12-7 912-24-9 03-33-3 2-87-5	Acenaphthene Acenaphthylene Aniline Anthracene Atrazine Azobenzene/Diphenyldiazine	BRL BRL BRL BRL BRL BRL		hâ/l hâ/l hâ/l hâ/l hâ/l	5.00 5.00 5.00 5.00 5.00 5.00 5.00	1 1 1 1	SW846 8270C		21-Nov-06	6111492	
08-96-8 2-53-3 20-12-7 912-24-9 03-33-3 2-87-5 6-55-3	Acenaphthene Acenaphthylene Aniline Anthracene Atrazine Azobenzene/Diphenyldiazine Benzidine	BRL BRL BRL BRL BRL BRL BRL		hây hây hây hây hây hây	5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00	1 1 1 1 1	SW846 8270C			6111492	
08-96-8 2-53-3 20-12-7 912-24-9 03-33-3 2-87-5 6-55-3 0-32-8	Acenaphthene Acenaphthylene Aniline Anthracene Atrazine Azobenzene/Diphenyldiazine Benzidine Benzo (a) anthracene	BRL BRL BRL BRL BRL BRL BRL BRL		ha\/ ha\/ ha\/ ha\/ ha\/ ha\/	5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00	1 1 1 1 1 1 1 1	SW846 8270C			6111492	
08-96-8 2-53-3 20-12-7 912-24-9 03-33-3 2-87-5 6-55-3 0-32-8 05-99-2	Acenaphthene Acenaphthylene Aniline Anthracene Atrazine Azobenzene/Diphenyldiazine Benzidine Benzo (a) anthracene Benzo (a) pyrene	BRL BRL BRL BRL BRL BRL BRL BRL		hây hây hây hây hây hây	5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00	1 1 1 1 1 1 1	SW846 8270C			6111492	
08-96-8 2-53-3 20-12-7 912-24-9 03-33-3 2-87-5 6-55-3 0-32-8 05-99-2 91-24-2	Acenaphthene Acenaphthylene Aniline Anthracene Atrazine Azobenzene/Diphenyldiazine Benzidine Benzo (a) anthracene Benzo (a) pyrene Benzo (b) fluoranthene	BRL BRL BRL BRL BRL BRL BRL BRL BRL		hay hay hay hay hay hay hay	5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00	1 1 1 1 1 1 1 1 1 1	SW846 8270C			6111492	
08-96-8 2-53-3 20-12-7 912-24-9 03-33-3 2-87-5 6-55-3 0-32-8 05-99-2 91-24-2 07-08-9	Acenaphthene Acenaphthylene Aniline Anthracene Atrazine Azobenzene/Diphenyldiazine Benzidine Benzo (a) anthracene Benzo (b) fluoranthene Benzo (g,h,i) perylene	BRL		hā/l hā/l hā/l hā/l hā/l hā/l hā/l	5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00	1 1 1 1 1 1 1 1 1 1 1	SW846 8270C			6111492	
08-96-8 2-53-3 20-12-7 912-24-9 03-33-3 2-87-5 6-55-3 0-32-8 05-99-2 91-24-2 07-08-9 5-85-0	Acenaphthene Acenaphthylene Aniline Anthracene Atrazine Azobenzene/Diphenyldiazine Benzidine Benzo (a) anthracene Benzo (b) fluoranthene Benzo (g,h,i) perylene Benzo (k) fluoranthene	BRL		hay hay hay hay hay hay hay	5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00	1 1 1 1 1 1 1 1 1 1	SW846 8270C			6111492	
08-96-8 2-53-3 20-12-7 912-24-9 03-33-3 2-87-5 6-55-3 0-32-8 05-99-2 91-24-2 07-08-9 5-85-0 00-51-6	Acenaphthene Acenaphthylene Aniline Anthracene Atrazine Azobenzene/Diphenyldiazine Benzidine Benzo (a) anthracene Benzo (a) pyrene Benzo (b) fluoranthene Benzo (k) fluoranthene Benzo (k) fluoranthene Benzoic acid	BRL		hā/l hā/l hā/l hā/l hā/l hā/l hā/l	5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00	1 1 1 1 1 1 1 1 1 1 1	SW846 8270C			6111492	
08-96-8 2-53-3 20-12-7 912-24-9 03-33-3 2-67-5 6-55-3 0-32-8 05-99-2 91-24-2 07-08-9 5-85-0 00-51-6 11-91-1 11-44-4	Acenaphthene Acenaphthylene Aniline Anthracene Atrazine Azobenzene/Diphenyldiazine Benzidine Benzo (a) anthracene Benzo (a) pyrene Benzo (b) fluoranthene Benzo (g,h,i) perylene Benzo (k) fluoranthene Benzoic acid Benzyl alcohol Bis(2-chloroethoxy)methane Bis(2-chloroethyl)ether	BRL		hay hay hay hay hay hay hay hay hay hay	5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00	1 1 1 1 1 1 1 1 1 1 1 1 1 1	SW846 8270C			6111492	
08-96-8 2-53-3 20-12-7 912-24-9 03-33-3 2-87-5 6-55-3 0-32-8 05-99-2 91-24-2 07-08-9 5-85-0 00-51-6 11-91-1 11-44-4 9638-32-9	Acenaphthene Acenaphthylene Aniline Anthracene Atrazine Azobenzene/Diphenyldiazine Benzidine Benzo (a) anthracene Benzo (a) pyrene Benzo (b) fluoranthene Benzo (g,h,i) perylene Benzo (k) fluoranthene Benzoic acid Benzyl alcohol Bis(2-chloroethyl)ether Bis(2-chloroisopropyl)ether	BRL		hal, hal, hal, hal, hal, hal, hal, hal,	5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	SW846 8270C			6111492	
08-96-8 2-53-3 20-12-7 912-24-9 03-33-3 2-87-5 6-55-3 0-32-8 05-99-2 91-24-2 07-08-9 5-85-0 00-51-6 11-91-1 11-44-4 9638-32-9 17-81-7	Acenaphthene Acenaphthylene Aniline Anthracene Atrazine Azobenzene/Diphenyldiazine Benzidine Benzo (a) anthracene Benzo (b) fluoranthene Benzo (g,h,i) perylene Benzo (k) fluoranthene Benzoic acid Benzyl alcohol Bis(2-chloroethoxy)methane Bis(2-chloroisopropyl)ether Bis(2-ethylhexyl)phthalate	BRL		hay hay hay hay hay hay hay hay hay hay	5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	SW846 8270C			6111492	
08-96-8 2-53-3 20-12-7 912-24-9 03-33-3 2-87-5 6-55-3 0-32-8 05-99-2 91-24-2 07-08-9 5-85-0 00-51-6 11-91-1 11-44-4 9638-32-9 17-81-7	Acenaphthene Acenaphthylene Aniline Anthracene Atrazine Azobenzene/Diphenyldiazine Benzidine Benzo (a) anthracene Benzo (a) pyrene Benzo (b) fluoranthene Benzo (g,h,i) perylene Benzo (k) fluoranthene Benzoic acid Benzyl alcohol Bis(2-chloroethyl)ether Bis(2-chloroisopropyl)ether	BRL		hay hay hay hay hay hay hay hay hay hay	5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	SW846 8270C			6111492	
08-96-8 2-53-3 20-12-7 912-24-9 03-33-3 2-87-5 6-55-3 0-32-8 05-99-2 91-24-2 07-08-9 5-85-0 00-51-6 11-91-1 11-44-4 9638-32-9 17-81-7 01-55-3	Acenaphthene Acenaphthylene Aniline Anthracene Atrazine Azobenzene/Diphenyldiazine Benzidine Benzo (a) anthracene Benzo (b) fluoranthene Benzo (g,h,i) perylene Benzo (k) fluoranthene Benzoic acid Benzyl alcohol Bis(2-chloroethoxy)methane Bis(2-chloroisopropyl)ether Bis(2-ethylhexyl)phthalate	BRL		hay hay hay hay hay hay hay hay hay hay	5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	SW846 8270C			6111492	
08-96-8 2-53-3 20-12-7 912-24-9 03-33-3 2-87-5 6-55-3 0-32-8 05-99-2 91-24-2 07-08-9 5-85-0 00-51-6 11-91-1 11-44-4 9638-32-9 17-81-7 01-55-3 5-68-7 6-74-8	Acenaphthene Acenaphthylene Aniline Anthracene Atrazine Azobenzene/Diphenyldiazine Benzidine Benzo (a) anthracene Benzo (a) pyrene Benzo (b) fluoranthene Benzo (g,h,i) perylene Benzoic acid Benzyl alcohol Bis(2-chloroethoxy)methane Bis(2-chloroethoxy)methane Bis(2-chloroethyl)ether Bis(2-ethylhexyl)phthalate 4-Bromophenyl phenyl ether Butyl benzyl phthalate Carbazole	BRL		hā/l hā/l hā/l hā/l hā/l hā/l hā/l hā/l	5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	SW846 8270C			6111492	
33-32-9 208-96-8 52-53-3 3(20-12-7 1912-24-9 103-33-3 3(2-87-5 16-55-3 103-2-8 101-24-2 101-24-2 101-24-2 101-25-1 111-44-4 103-636-32-9 117-81-7 101-55-3 105-68-7 16-74-8 105-90-7 106-47-8	Acenaphthene Acenaphthylene Aniline Anthracene Atrazine Azobenzene/Diphenyldiazine Benzidine Benzo (a) anthracene Benzo (b) fluoranthene Benzo (g,h,i) perylene Benzo (k) fluoranthene Benzoic acid Benzyl alcohol Bis(2-chloroethoxy)methane Bis(2-chloroethoxy)methane Bis(2-chloroisopropyl)ether Bis(2-ethylhexyl)phthalate 4-Bromophenyl phenyl ether Butyl benzyl phthalate	BRL		hay hay hay hay hay hay hay hay hay hay	5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	SW846 8270C			6111492	

Client Project # 95-207351.00

<u>Matrix</u> Ground Water Collection Date/Time 20-Nov-06 12:30

Semivolatile	ile Organic Compounds by GC									
		MS								
Prenared	Organic Compounds by SW846 8270	<u>0C</u>								
repared	by method SW846 3510C									
95-57-8	2-Chlorophenol	BRL	μg/l	5.00	1	SW846 8270C	21-Nov-06	21-Nov-06	6111492	M.B
7005-72-3	4-Chlorophenyl phenyl ether	BRL	μg/l	5.00	1					
218-01-9	Chrysene	BRL	μg/l	5.00	1					
53-70-3	Dibenzo (a,h) anthracene	BRL	μg/l	5.00	1					
132-64-9	Dibenzofuran	BRL	μg/l	5.00	1					
95-50-1	1,2-Dichlorobenzene	BRL	μg/l	5.00	1					
541-73-1	1,3-Dichlorobenzene	BRL	μg/l	5.00	1					
106-46-7	1,4-Dichlorobenzene	BRL	μg/l	5.00	1			"		
91-94-1	3,3'-Dichlorobenzidine	BRL	μg/l	5.00	1			"		
120-83-2	2,4-Dichlorophenol	BRL	μg/l	5.00	1					
34-66-2	Diethyl phthalate	BRL	μg/l	5.00	1					
131-11-3	Dimethyl phthalate	BRL	μg/l	5.00	1					
105-67-9	2,4-Dimethylphenol	BRL	μg/l	5.00	1					
34-74-2	Di-n-butyl phthalate	BRL	μg/l	5.00	1					
534-52-1	4,6-Dinitro-2-methylphenol	BRL	μg/l	5.00	1					
51-28-5	2,4-Dinitrophenol	BRL	μg/l	5.00	1					
121-14-2	2,4-Dinitrotoluene	BRL	μg/l	5.00	1					
606-20-2	2,6-Dinitrotoluene	BRL	μg/l	5.00	1					
117-84-0	Di-n-octyl phthalate	BRL	μg/l	5.00	1					
206-44-0	Fluoranthene	BRL	μg/l	5.00	1					
36-73-7	Fluorene	BRL	μg/l	5.00	1					
18-74-1	Hexachlorobenzene	BRL	μg/l	5.00	1					
7-68-3	Hexachlorobutadiene	BRL	μg/l	5.00	1			"		
7-47-4	Hexachlorocyclopentadiene	BRL	μg/l	5.00	1					
67-72-1	Hexachloroethane	BRL	μg/l	5.00	1			"		
193-39-5	Indeno (1,2,3-cd) pyrene	BRL	μg/l	5.00	1			"		
78-59-1	Isophorone	BRL	μg/l	5.00	1			"		
91-57-6	2-Methylnaphthalene	41.2	μg/l	5.00	1			"		
95-48-7	2-Methylphenol	BRL	μg/l	5.00	1			"		
108-39-4,	3,4-Methylphenol	BRL	μg/l	10.0	1			"		
106-44-5 91-20-3	Naphthalene	48.2	μg/l	5.00	1					
38-74-4	2-Nitroaniline	BRL	μg/l	5.00	1					
9-09-2	3-Nitroaniline	BRL	μg/l	5.00	1					
100-01-6	4-Nitroaniline	BRL	μg/l	20.0	1					
98-95-3	Nitrobenzene	BRL	μg/l	5.00	1					
38-75-5	2-Nitrophenol	BRL	μg/l	5.00	1					
100-02-7	4-Nitrophenol	BRL	μg/l	20.0	1					
62-75-9	N-Nitrosodimethylamine	BRL	μg/l	5.00	1					
21-64-7	N-Nitrosodi-n-propylamine	BRL	μg/l	5.00	1					
86-30-6	N-Nitrosodiphenylamine	BRL	μg/l	5.00	1					
37-86-5	Pentachlorophenol	BRL	μg/I	20.0	1					
5-01-8	Phenanthrene	BRL	μg/I	5.00	1					
08-95-2	Phenol	BRL	μg/I	5.00	1					
129-00-0	Pyrene	BRL	μg/l	5.00	1					
110-86-1	Pyridine	BRL	μg/l	5.00	1					
	1,2,4-Trichlorobenzene	BRL	μg/l	5.00	1					
0-12-0		27.1	μg/l	5.00	1					
5-95-4	1-Methylnaphthalene 2,4,5-Trichlorophenol	BRL	μg/l	5.00	1					
- JU T	2,4,5-1110111010pHeH0I	BRL	μg/l	5.00	1					

Sample Identification MW-2 SA54478-07

Client Project # 95-207351.00

<u>Matrix</u> Ground Water Collection Date/Time 20-Nov-06 12:30

CAS No.	Analyte(s)	Result	Flag	Units	*RDL	Dilution	Method Ref.	Prepared	Analyzed	Batch	Analyst
Semivola	tile Organic Compounds by GCMS	5									
Semivolatil	e Organic Compounds by SW846 8270C										
Prepared	d by method SW846 3510C										
Surrogate re	ecoveries:										
321-60-8	2-Fluorobiphenyl	64.4		30-130 %	,		SW846 8270C	21-Nov-06	21-Nov-06	6111492	M.B
367-12-4	2-Fluorophenol	51.7		15-110 %	,						
4165-60-0	Nitrobenzene-d5	52.5		30-130 %	,						
4165-62-2	Phenol-d5	43.6		15-110 %	,						
1718-51-0	Terphenyl-dl4	60.1		30-130 %	,						
118-79-6	2,4,6-Tribromophenol	65.4		15-110 %	,						
Total Me	tals by EPA 6000/7000 Series Meth	ods									
7440-22-4	Silver	BRL		mg/l	0.0008	1	SW846 6020	22-Nov-06	22-Nov-06	6111616	LR
7440-38-2	Arsenic	0.0236		mg/l	0.0020	1	SW846 6010B		22-Nov-06	6111611	
7440-43-9	Cadmium	0.0091		mg/l	0.0002	10	SW846 6020		22-Nov-06	6111616	
7440-47-3	Chromium	0.190		mg/l	0.0025	1	SW846 6010B		22-Nov-06	6111611	
7440-50-8	Copper	0.800		mg/l	0.0025	1					
7439-89-6	Iron	72.0		mg/l	0.0025	1					
7440-02-0	Nickel	0.0926		mg/l	0.0025	1					
7439-92-1	Lead	0.478		mg/l	0.0002	10	SW846 6020		22-Nov-06	6111616	
7782-49-2	Selenium	0.0022		mg/l	0.0012	10					
7440-66-6	Zinc	3.14		mg/l	0.0025	1	SW846 6010B		22-Nov-06	6111611	
Total Me	tals by EPA 200 Series Methods										
7439-97-6	Mercury	0.00020		mg/l	0.00020	1	EPA 245.1/7470A	22-Nov-06	22-Nov-06	6111612	YP
General	Chemistry Parameters										
	Trivalent Chromium	0.190		mg/l	0.0050	1	Calculation	22-Nov-06	22-Nov-06	6111611	LR
1854-029-9	Hexavalent Chromium	BRL	HT2	mg/l	0.025	5	SM3500CrD/7196A	21-Nov-06 18:26	21-Nov-06	6111588	SS
57-12-5	Cyanide (total)	0.0140		mg/l	0.0100	1	10-204-00-1-A / SW846 9012A	21-Nov-06	22-Nov-06	6111673	RLT
7782-50-5	Total Residual Chlorine	0.555	HT2	mg/l	0.100	5	Hach 8167	21-Nov-06 18:35	21-Nov-06	6111589	SS
	Total Suspended Solids	2,030		mg/l	16.6	3.33	SM2540D	21-Nov-06	21-Nov-06	6111586	

Volatile Organic Compounds - Quality Control

Analyte(s)	Result	Flag	Units	*RDL	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
Batch 6111585 - SW846 5030 Water MS										
Blank (6111585-BLK1)										
Prepared: 21-Nov-06 Analyzed: 22-Nov-06										
,1,2-Trichlorotrifluoroethane (Freon 113)	BRL		μg/l	1.0						
Acetone	BRL		μg/l	10.0						
Acrylonitrile	BRL		μg/l	1.0						
Benzene	BRL		μg/l	1.0						
Bromobenzene	BRL		μg/l	1.0						
Bromochloromethane	BRL		μg/l	1.0						
Bromodichloromethane	BRL		μg/l	1.0						
Bromoform	BRL			1.0						
	BRL		μg/l							
Bromomethane	BRL		μg/l	2.0						
P-Butanone (MEK)			μg/l	10.0						
n-Butylbenzene	BRL		μg/l	1.0						
sec-Butylbenzene	BRL		μg/l	1.0						
ert-Butylbenzene	BRL		μg/l	1.0						
Carbon disulfide	BRL		μg/l	5.0						
Carbon tetrachloride	BRL		μg/l	1.0						
Chlorobenzene	BRL		μg/l	1.0						
Chloroethane	BRL		μg/l	2.0						
Chloroform	BRL		μg/l	1.0						
Chloromethane	BRL		μg/l	2.0						
2-Chlorotoluene	BRL		μg/l	1.0						
I-Chlorotoluene	BRL		μg/l	1.0						
,2-Dibromo-3-chloropropane	BRL		μg/l	2.0						
Dibromochloromethane	BRL		μg/l	1.0						
,2-Dibromoethane (EDB)	BRL		μg/l	1.0						
Dibromomethane	BRL		μg/l	1.0						
,2-Dichlorobenzene	BRL		μg/l	1.0						
,3-Dichlorobenzene	BRL		μg/l	1.0						
,4-Dichlorobenzene	BRL		μg/l	1.0						
Dichlorodifluoromethane (Freon12)	BRL		μg/l	2.0						
,1-Dichloroethane	BRL		μg/l	1.0						
,2-Dichloroethane	BRL		μg/l	1.0						
,1-Dichloroethene	BRL			1.0						
is-1,2-Dichloroethene	BRL		μg/l							
			μg/I	1.0						
rans-1,2-Dichloroethene	BRL		μg/l	1.0						
,2-Dichloropropane	BRL		μg/l	1.0						
,3-Dichloropropane	BRL		μg/l	1.0						
2,2-Dichloropropane	BRL		μg/l	1.0						
,1-Dichloropropene	BRL		μg/l	1.0						
sis-1,3-Dichloropropene	BRL		μg/l	1.0						
rans-1,3-Dichloropropene	BRL		μg/l	1.0						
Ethylbenzene	BRL		μg/l	1.0						
Hexachlorobutadiene	BRL		μg/l	1.0						
2-Hexanone (MBK)	BRL		μg/l	10.0						
sopropylbenzene	BRL		μg/l	1.0						
l-Isopropyltoluene	BRL		μg/l	1.0						
Methyl tert-butyl ether	BRL		μg/l	1.0						
I-Methyl-2-pentanone (MIBK)	BRL		μg/l	10.0						
Methylene chloride	BRL		μg/l	10.0						
Naphthalene	BRL		μg/l	1.0						
n-Propylbenzene	BRL		μg/l	1.0						
Styrene	BRL		μg/l	1.0						
,1,1,2-Tetrachloroethane	BRL		μg/l	1.0						
,.,.,= 1000000000000000000000000000000000000	BRL		P9/1	1.0						

Volatile Organic Compounds - Quality Control

Analyte(s)	Result	Flag	Units	*RDL	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
	Tobait	- 1115	Sino	IUL	20,01	- COUIT	, siede	210	5	Liiii
Batch 6111585 - SW846 5030 Water MS										
Blank (6111585-BLK1)										
Prepared: 21-Nov-06 Analyzed: 22-Nov-06										
Tetrachloroethene	BRL		μg/l	1.0						
Toluene	BRL		μg/l	1.0						
1,2,3-Trichlorobenzene	BRL		μg/l	1.0						
1,2,4-Trichlorobenzene	BRL		μg/l	1.0						
1,1,1-Trichloroethane	BRL		μg/l	1.0						
1,1,2-Trichloroethane	BRL		μg/l	1.0						
Trichloroethene	BRL		μg/l	1.0						
Trichlorofluoromethane (Freon 11)	BRL		μg/l	1.0						
1,2,3-Trichloropropane	BRL		μg/l	1.0						
1,2,4-Trimethylbenzene	BRL		μg/l	1.0						
1,3,5-Trimethylbenzene	BRL		μg/l	1.0						
Vinyl chloride	BRL		μg/l	1.0						
n,p-Xylene	BRL		μg/l	2.0						
o-Xylene	BRL		μg/l	1.0						
Tetrahydrofuran	BRL		μg/l	10.0						
Ethyl ether	BRL		μg/l	1.0						
Fert-amyl methyl ether	BRL		μg/l	1.0						
Ethyl tert-butyl ether	BRL			1.0						
Di-isopropyl ether	BRL		μg/l	1.0						
	BRL		μg/l							
Tert-Butanol / butyl alcohol			μg/l	10.0						
1,4-Dioxane	BRL		μg/l	20.0	50.0		22.2	70.400		
Surrogate: 4-Bromofluorobenzene Surrogate: Toluene-d8	46.9 48.1		μg/l		50.0 50.0		93.8 96.2	70-130 70-130		
Surrogate: 1 oluene-uo Surrogate: 1,2-Dichloroethane-d4	49.1 49.3		μg/l μg/l		50.0 50.0		98.6	70-130 70-130		
Surrogate: Dibromofluoromethane	47.4		μg/l		50.0		94.8	70-130		
LCS (6111585-BS1)										
Prepared: 21-Nov-06 Analyzed: 22-Nov-06										
1,1,2-Trichlorotrifluoroethane (Freon 113)	15.9		μg/l		20.0		79.5	70-130		
Acetone	19.7		μg/l		20.0		98.5	32.4-154		
Acrylonitrile	19.6		μg/l		20.0		98.0	70-130		
Benzene	16.9		μg/l		20.0		84.5	70-130		
Bromobenzene	21.6		μg/l		20.0		108	70-130		
Bromochloromethane	19.0		μg/l		20.0		95.0	70-130		
Bromodichloromethane	18.4		μg/l		20.0		92.0	70-130		
Bromoform	18.0				20.0		90.0	70-130		
	23.9		μg/l		20.0			70-130 57.6-150		
Bromomethane			μg/l				120			
2-Butanone (MEK)	16.6		μg/l		20.0		83.0	46.5-137		
n-Butylbenzene	20.4		μg/l		20.0		102	70-130		
sec-Butylbenzene	20.8		μg/l		20.0		104	70-130		
ert-Butylbenzene	21.2		μg/l		20.0		106	70-130		
Carbon disulfide	18.4		μg/l		20.0		92.0	70-130		
Carbon tetrachloride	16.9		μg/l		20.0		84.5	70-130		
Chlorobenzene	20.6		μg/l		20.0		103	70-130		
Chloroethane	17.6		μg/l		20.0		88.0	57.6-143		
Chloroform	18.4		μg/l		20.0		92.0	70-130		
Chloromethane	16.4		μg/l		20.0		82.0	70-130		
2-Chlorotoluene	21.7		μg/l		20.0		108	70-130		
4-Chlorotoluene	21.9		μg/l		20.0		110	70-130		
1,2-Dibromo-3-chloropropane	19.2		μg/l		20.0		96.0	70-130		
Dibromochloromethane	16.9		μg/l		20.0		84.5	62.5-139		
1,2-Dibromoethane (EDB)	17.7		μg/l		20.0		88.5	70-130		
Dibromomethane	17.7		μg/l		20.0		88.5	70-130		
			1 0							

					Spike	Source		%REC		RPD
Analyte(s)	Result	Flag	Units	*RDL	Level	Result	%REC	Limits	RPD	Limit
Batch 6111585 - SW846 5030 Water MS										
CS (6111585-BS1)										
Prepared: 21-Nov-06 Analyzed: 22-Nov-06										
1,3-Dichlorobenzene	22.3		μg/l		20.0		112	70-130		
,4-Dichlorobenzene	22.3		μg/l		20.0		112	70-130		
Dichlorodifluoromethane (Freon12)	13.3		μg/l		20.0		66.5	34.6-198		
I,1-Dichloroethane	17.5		μg/l		20.0		87.5	70-130		
,2-Dichloroethane	18.0		μg/l		20.0		90.0	70-130		
,1-Dichloroethene	16.3		μg/l		20.0		81.5	70-130		
sis-1,2-Dichloroethene	17.9		μg/l		20.0		89.5	70-130		
rans-1,2-Dichloroethene	13.9	QC1	μg/l		20.0		69.5	70-130		
1,2-Dichloropropane	18.4		μg/l		20.0		92.0	70-130		
,3-Dichloropropane	18.7		μg/l		20.0		93.5	70-130		
2.2-Dichloropropane	13.0	QC1	μg/l		20.0		65.0	70-130		
,1-Dichloropropene	16.2	ασ.	μg/l		20.0		81.0	70-130		
sis-1,3-Dichloropropene	17.6		μg/l		20.0		88.0	70-130		
rans-1,3-Dichloropropene	18.0		μg/l		20.0		90.0	70-130		
Ethylbenzene	20.3		μg/l		20.0		102	70-130		
Hexachlorobutadiene	21.0		μg/l		20.0		105	63.4-142		
2-Hexanone (MBK)	16.3				20.0		81.5	70-130		
,	19.5		μg/l		20.0		97.5	70-130		
sopropylbenzene	21.8		μg/l					70-130		
1-Isopropyltoluene	16.5		μg/l		20.0		109			
Methyl tert-butyl ether			μg/l		20.0		82.5	70-130		
I-Methyl-2-pentanone (MIBK)	16.6 18.0		μg/l		20.0		83.0	51-135		
Methylene chloride			μg/l		20.0		90.0	70-130		
Naphthalene	23.8		μg/l		20.0		119	70-130		
n-Propylbenzene	20.7		μg/l		20.0		104	70-130		
Styrene	21.2		μg/l		20.0		106	70-130		
,1,1,2-Tetrachloroethane	20.3		μg/l		20.0		102	70-130		
I,1,2,2-Tetrachloroethane	19.0		μg/l		20.0		95.0	70-130		
Tetrachloroethene	16.1		μg/l		20.0		80.5	70-130		
Foluene	17.1		μg/l		20.0		85.5	70-130		
1,2,3-Trichlorobenzene	23.9		μg/l		20.0		120	70-130		
1,2,4-Trichlorobenzene	23.6		μg/l		20.0		118	70-130		
1,1,1-Trichloroethane	16.5		μg/l		20.0		82.5	70-130		
1,1,2-Trichloroethane	18.1		μg/l		20.0		90.5	70-130		
Trichloroethene	17.0		μg/l		20.0		85.0	70-130		
Frichlorofluoromethane (Freon 11)	16.3		μg/l		20.0		81.5	63.2-153		
1,2,3-Trichloropropane	22.2		μg/l		20.0		111	70-130		
I,2,4-Trimethylbenzene	21.7		μg/l		20.0		108	70-130		
1,3,5-Trimethylbenzene	21.2		μg/l		20.0		106	70-130		
/inyl chloride	23.7		μg/l		20.0		118	70-130		
m,p-Xylene	40.6		μg/l		40.0		102	70-130		
o-Xylene	21.4		μg/l		20.0		107	70-130		
Γetrahydrofuran	17.5		μg/l		20.0		87.5	70-130		
Ethyl ether	17.8		μg/l		20.0		89.0	57.2-135		
ert-amyl methyl ether	17.3		μg/l		20.0		86.5	70-130		
Ethyl tert-butyl ether	18.3		μg/l		20.0		91.5	70-130		
Di-isopropyl ether	17.9		μg/l		20.0		89.5	70-130		
Fert-Butanol / butyl alcohol	171		μg/l		200		85.5	70-130		
,4-Dioxane	163		μg/l		200		81.5	41.5-136		
Surrogate: 4-Bromofluorobenzene	49.3		μg/l		50.0		98.6	70-130		
Surrogate: Toluene-d8	48.8		μg/l		50.0		97.6	70-130		
Surrogate: 1,2-Dichloroethane-d4	49.9		μg/l		50.0		99.8	70-130		
Surrogate: Dibromofluoromethane	49.2		μg/l		50.0		98.4	70-130		

					Spike	Source		%REC		RPD
Analyte(s)	Result	Flag	Units	*RDL	Level	Result	%REC	Limits	RPD	Limit
Batch 6111585 - SW846 5030 Water MS										
Prepared: 21-Nov-06 Analyzed: 22-Nov-06										
	40.0				00.0	DDI	00.0	70.400		
Benzene	16.0		μg/l		20.0	BRL	80.0	70-130		
Chlorobenzene	20.2		μg/l		20.0	BRL	101	70-130		
,1-Dichloroethene	17.9		μg/l		20.0	BRL	89.5	70-130		
Toluene	17.1		μg/l		20.0	0.670	82.2	70-130		
richloroethene	17.4		μg/l		20.0	BRL	87.0	70-130		
Surrogate: 4-Bromofluorobenzene	46.7		μg/l		50.0		93.4	70-130		
Surrogate: Toluene-d8 Surrogate: 1,2-Dichloroethane-d4	47.7 49.7		μg/l μg/l		50.0 50.0		95.4 99.4	70-130 70-130		
Surrogate: 1,2-bichloroethane-u-	47.2		μg/l		50.0		94.4	70-130		
-			F3.				•			
Matrix Spike Dup (6111585-MSD1) Source: SA	A54184-02									
repared: 21-Nov-06 Analyzed: 22-Nov-06										
Benzene	15.8		μg/l		20.0	BRL	79.0	70-130	1.26	30
Chlorobenzene	20.4		μg/l		20.0	BRL	102	70-130	0.985	30
1,1-Dichloroethene	17.8		μg/l		20.0	BRL	89.0	70-130	0.560	30
oluene	16.8		μg/l		20.0	0.670	80.6	70-130	1.97	30
richloroethene	17.1		μg/l		20.0	BRL	85.5	70-130	1.74	30
Surrogate: 4-Bromofluorobenzene	46.7		μg/l		50.0		93.4	70-130		
Surrogate: Toluene-d8	47.5		μg/l		50.0		95.0	70-130		
Surrogate: 1,2-Dichloroethane-d4	49.3		μg/l		50.0 50.0		98.6 05.0	70-130 70-130		
Surrogate: Dibromofluoromethane	47.5		μg/l		50.0		95.0	70-130		
Batch 6111630 - VPH										
llank (6111630-BLK1)										
repared & Analyzed: 22-Nov-06										
5-C8 Aliphatic Hydrocarbons	BRL		mg/l	0.0750						
29-C12 Aliphatic Hydrocarbons	BRL		mg/l	0.0250						
29-C10 Aromatic Hydrocarbons	BRL		mg/l	0.0250						
Inadjusted C5-C8 Aliphatic Hydrocarbons	BRL		mg/l	0.0750						
Jnadjusted C9-C12 Aliphatic Hydrocarbons	BRL		mg/l	0.0250						
Benzene	BRL		μg/l	5.0						
Ethylbenzene	BRL		μg/l	5.0						
Methyl tert-butyl ether	BRL		μg/l	5.0						
Naphthalene	BRL		μg/l	5.0						
- Toluene	BRL		μg/l	5.0						
n,p-Xylene	BRL		μg/l	10.0						
o-Xylene	BRL		μg/l	5.0						
2-Methylpentane	BRL		μg/l	5.0						
-Nonane	BRL		μg/l	10.0						
n-Pentane	BRL		μg/l	10.0						
,2,4-Trimethylbenzene	BRL			5.0						
·	BRL		μg/l							
2,2,4-Trimethylpentane	BRL		μg/l	5.0						
n-Butylcyclohexane			μg/l	5.0						
n-Decane	BRL		μg/l	5.0	F0.0		04.0	70.400		
Surrogate: 2,5-Dibromotoluene (FID) Surrogate: 2,5-Dibromotoluene (PID)	47.4 46.4		μg/l μg/l		50.0 50.0		94.8 92.8	70-130 70-130		
.CS (6111630-BS1)										
Prepared & Analyzed: 22-Nov-06										
C5-C8 Aliphatic Hydrocarbons	120		mg/l		140		85.7	70-130		
C9-C12 Aliphatic Hydrocarbons	61.9		mg/l		55.2		112	70-130		
C9-C10 Aromatic Hydrocarbons	38.8		mg/l		40.0		97.0	70-130		
Jnadjusted C5-C8 Aliphatic Hydrocarbons	36.6 265		-		280		97.0 94.6	70-130 70-130		
			mg/l							
Jnadjusted C9-C12 Aliphatic Hydrocarbons	101		mg/l		84.8		119	70-130		
Benzene	21.8		μg/l		20.0		109	70-130		
Ethylbenzene	19.1		μg/l		20.0		95.5	70-130		
Methyl tert-butyl ether	23.5		µg/I µg/I		20.0		95.5	70-130 70-130		

	_				Spike	Source		%REC		RPD
Analyte(s)	Result	Flag	Units	*RDL	Level	Result	%REC	Limits	RPD	Limit
Batch 6111630 - VPH										
LCS (6111630-BS1)										
Prepared & Analyzed: 22-Nov-06										
Naphthalene	22.6		μg/l		20.0		113	70-130		
Toluene	21.5		μg/l		20.0		108	70-130		
m,p-Xylene	40.0		μg/l		40.0		100	70-130		
o-Xylene	18.9		μg/l		20.0		94.5	70-130		
2-Methylpentane	20.6		μg/l		20.0		103	70-130		
n-Nonane	19.7		μg/l		20.0		98.5	70-130		
n-Pentane	19.2		μg/l		20.0		96.0	70-130		
1,2,4-Trimethylbenzene	19.6		μg/l		20.0		98.0	70-130		
2,2,4-Trimethylpentane	21.5		μg/l		20.0		108	70-130		
n-Butylcyclohexane	18.9				20.0		94.5	70-130		
n-Decane	19.1		μg/l		20.0		95.5	70-130		
	44.7		μg/l		50.0					
Surrogate: 2,5-Dibromotoluene (FID) Surrogate: 2,5-Dibromotoluene (PID)	44.7 45.7		μg/l μg/l		50.0 50.0		89.4 91.4	70-130 70-130		
LCS Dup (6111630-BSD1)			10							
Prepared & Analyzed: 22-Nov-06										
C5-C8 Aliphatic Hydrocarbons	113		mg/l		140		80.7	70-130	6.01	25
C9-C12 Aliphatic Hydrocarbons	63.9		mg/l		55.2		116	70-130	3.51	25
C9-C10 Aromatic Hydrocarbons	39.9		-		40.0		99.8	70-130	2.85	25
·			mg/l							
Unadjusted C5-C8 Aliphatic Hydrocarbons	258		mg/l		280		92.1	70-130	2.68	25
Unadjusted C9-C12 Aliphatic Hydrocarbons	104		mg/l		84.8		123	70-130	3.31	25
Benzene	22.2		μg/l		20.0		111	70-130	1.82	25
Ethylbenzene	19.0		μg/l		20.0		95.0	70-130	0.525	25
Methyl tert-butyl ether	23.1		μg/l		20.0		116	70-130	1.71	25
Naphthalene	20.9		μg/l		20.0		104	70-130	8.29	25
Toluene	21.4		μg/l		20.0		107	70-130	0.930	25
m,p-Xylene	40.4		μg/l		40.0		101	70-130	0.995	25
o-Xylene	19.2		μg/l		20.0		96.0	70-130	1.57	25
2-Methylpentane	21.3		μg/l		20.0		106	70-130	2.87	25
n-Nonane	20.5		μg/l		20.0		102	70-130	3.49	25
n-Pentane	16.8		μg/l		20.0		84.0	70-130	13.3	25
1,2,4-Trimethylbenzene	19.5		μg/l		20.0		97.5	70-130	0.512	25
2,2,4-Trimethylpentane	21.2		μg/l		20.0		106	70-130	1.87	25
n-Butylcyclohexane	20.1		μg/l		20.0		100	70-130	5.66	25
n-Decane	18.6		μg/l		20.0		93.0	70-130	2.65	25
Surrogate: 2,5-Dibromotoluene (FID)	47.2		μg/l		50.0		94.4	70-130		
Surrogate: 2,5-Dibromotoluene (PID)	49.2		μg/l		50.0		98.4	70-130		
Duplicate (6111630-DUP1) Source	e: SA54428-01									
Prepared & Analyzed: 22-Nov-06										
C5-C8 Aliphatic Hydrocarbons	0.0113	J	mg/l	0.0750		0.0119			5.17	50
C9-C12 Aliphatic Hydrocarbons	BRL		mg/l	0.0250		BRL				50
C9-C10 Aromatic Hydrocarbons	BRL		mg/l	0.0250		BRL				50
Unadjusted C5-C8 Aliphatic Hydrocarbons	0.0113	J	mg/l	0.0750		0.0119			5.17	50
Unadjusted C9-C12 Aliphatic Hydrocarbons	BRL	-	mg/l	0.0250		BRL			2	50
Benzene	BRL		-	5.0		BRL				50
	BRL		µg/l	5.0		BRL				
Ethylbenzene			μg/l							50
Methyl tert-butyl ether	BRL		μg/l	5.0		BRL				50
Naphthalene	BRL		μg/l	5.0		BRL				50
Toluene	BRL		μg/l	5.0		BRL				50
m,p-Xylene	BRL		μg/l	10.0		BRL				50
o-Xylene	BRL		μg/l	5.0		BRL				50
Surrogate: 2,5-Dibromotoluene (FID)	50.7		μg/l		50.0		101	70-130		

					Spike	Source		%REC		RPD
Analyte(s)	Result	Flag	Units	*RDL	Level	Result	%REC	Limits	RPD	Limit
Dotah (111/20 VDII										
Batch 6111630 - VPH Matrix Spike (6111630-MS1)	Source: SA54428-01									
Prepared & Analyzed: 22-Nov-06	30uice. 3A34420-01									
Benzene	19.8		ug/l		20.0	BRL	99.0	70-130		
Ethylbenzene	16.7		μg/l			BRL		70-130 70-130		
•	20.5		μg/l		20.0 20.0	BRL	83.5 102	70-130		
Methyl tert-butyl ether Naphthalene	19.6		μg/l		20.0	BRL	98.0	70-130		
Toluene	18.9		μg/l		20.0	BRL	94.5	70-130		
m,p-Xylene	35.4		μg/l μg/l		40.0	BRL	88.5	70-130		
p-Xylene	17.2		μg/l		20.0	BRL	86.0	70-130		
2-Methylpentane	16.3				20.0	BRL	81.5	70-130		
n-Nonane	19.0		μg/l μg/l		20.0	BRL	95.0	70-130		
n-Pentane	14.0		μg/l		20.0	BRL	70.0	70-130		
,2,4-Trimethylbenzene	17.7		μg/l		20.0	BRL	88.5	70-130		
2,2,4-Trimethylpentane	18.5		μg/l μg/l		20.0	BRL	92.5	70-130		
n-Butylcyclohexane	17.0		μg/l		20.0	0.0	85.0	70-130		
n-Decane	17.5		μg/l		20.0	0.0	87.5	70-130		
Surrogate: 2,5-Dibromotoluene (FID)	40.6		μg/l		50.0	0.0	81.2	70-130		
Surrogate: 2,5-Dibromotoluene (PID)	43.1		μg/l		50.0		86.2	70-130		
	Microex	tractabl	e Organic	Compound	ls - Quality	Control				
	1,1101 0011		v organic	compound	-	001101				
										RPD
					Spike	Source		%REC		
• • • • • • • • • • • • • • • • • • • •	Result	Flag	Units	*RDL	Spike Level	Source Result	%REC	%REC Limits	RPD	
Blank (6111557 - Microextr. by 50 Stank (6111557-BLK1) Prepared: 21-Nov-06 Analyzed: 22-Nov-06		Flag	Units µg/l	*RDL			%REC		RPD	
Batch 6111557 - Microextr. by 50 Blank (6111557-BLK1) Prepared: 21-Nov-06 Analyzed: 22-Nov-06 ,2-Dibromoethane (EDB) .CS (6111557-BS1) Prepared: 21-Nov-06 Analyzed: 22-Nov-06	04.1 BRL	Flag	µg/l	0.0100	Level			Limits	RPD	
Batch 6111557 - Microextr. by 50 Blank (6111557-BLK1) Prepared: 21-Nov-06 Analyzed: 22-Nov-06 ,2-Dibromoethane (EDB) .CS (6111557-BS1) Prepared: 21-Nov-06 Analyzed: 22-Nov-06	04.1	Flag					%REC 88.0		RPD	
Batch 6111557 - Microextr. by 50 Blank (6111557-BLK1) Prepared: 21-Nov-06 Analyzed: 22-Nov-06 1,2-Dibromoethane (EDB) LCS (6111557-BS1) Prepared: 21-Nov-06 Analyzed: 22-Nov-06 1,2-Dibromoethane (EDB) Duplicate (6111557-DUP1)	04.1 BRL	Flag	μg/l	0.0100	Level			Limits	RPD	
Batch 6111557 - Microextr. by 50 Blank (6111557-BLK1) Prepared: 21-Nov-06 Analyzed: 22-Nov-06 ,2-Dibromoethane (EDB) Prepared: 21-Nov-06 Analyzed: 22-Nov-06 ,2-Dibromoethane (EDB) Puplicate (6111557-DUP1) Prepared: 21-Nov-06 Analyzed: 22-Nov-06	04.1 BRL 0.176 Source: SA54443-02	Flag	hâ\J	0.0100 0.0100	Level	Result		Limits	RPD	Limit
Batch 6111557 - Microextr. by 50 Blank (6111557-BLK1) Prepared: 21-Nov-06 Analyzed: 22-Nov-06 ,2-Dibromoethane (EDB) Prepared: 21-Nov-06 Analyzed: 22-Nov-06 ,2-Dibromoethane (EDB) Puplicate (6111557-DUP1) Prepared: 21-Nov-06 Analyzed: 22-Nov-06	04.1 BRL 0.176 Source: SA54443-02 BRL		h8\J	0.0100 0.0100 0.0100	0.200	Result		Limits	RPD	
Batch 6111557 - Microextr. by 50 Blank (6111557-BLK1) Prepared: 21-Nov-06 Analyzed: 22-Nov-06 1,2-Dibromoethane (EDB) Prepared: 21-Nov-06 Analyzed: 22-Nov-06 1,2-Dibromoethane (EDB) Duplicate (6111557-DUP1) Prepared: 21-Nov-06 Analyzed: 22-Nov-06	04.1 BRL 0.176 Source: SA54443-02 BRL		h8\J	0.0100 0.0100	0.200	Result		Limits	RPD	Limit
Blank (6111557-BLK1) Prepared: 21-Nov-06 Analyzed: 22-Nov-06 1,2-Dibromoethane (EDB) LCS (6111557-BS1) Prepared: 21-Nov-06 Analyzed: 22-Nov-06 1,2-Dibromoethane (EDB) Duplicate (6111557-DUP1) Prepared: 21-Nov-06 Analyzed: 22-Nov-06	04.1 BRL 0.176 Source: SA54443-02 BRL		h8\J	0.0100 0.0100 0.0100	0.200 s - Quality	Result BRL Control		Limits	RPD	Limit
Batch 6111557 - Microextr. by 50 Blank (6111557-BLK1) Prepared: 21-Nov-06 Analyzed: 22-Nov-06 1,2-Dibromoethane (EDB) CS (6111557-BS1) Prepared: 21-Nov-06 Analyzed: 22-Nov-06 1,2-Dibromoethane (EDB) Duplicate (6111557-DUP1) Prepared: 21-Nov-06 Analyzed: 22-Nov-06 1,2-Dibromoethane (EDB)	04.1 BRL 0.176 Source: SA54443-02 BRL		h8\J	0.0100 0.0100 0.0100	0.200	Result		Limits 50-150	RPD	Limit 30 RPD
Batch 6111557 - Microextr. by 5 Blank (6111557-BLK1) Prepared: 21-Nov-06 Analyzed: 22-Nov-06 1,2-Dibromoethane (EDB) LCS (6111557-BS1) Prepared: 21-Nov-06 Analyzed: 22-Nov-06 1,2-Dibromoethane (EDB) Duplicate (6111557-DUP1) Prepared: 21-Nov-06 Analyzed: 22-Nov-06 1,2-Dibromoethane (EDB) Analyte(s)	04.1 BRL 0.176 Source: SA54443-02 BRL Extract:	able Pet	µg/I µg/I µg/I roleum H y	0.0100 0.0100 0.0100 ydrocarbon	0.200 s - Quality Spike	Result BRL Control Source	88.0	Limits 50-150 %REC		Limit 30 RPD
Batch 6111557 - Microextr. by 5 Blank (6111557-BLK1) Prepared: 21-Nov-06 Analyzed: 22-Nov-06 1,2-Dibromoethane (EDB) LCS (6111557-BS1) Prepared: 21-Nov-06 Analyzed: 22-Nov-06 1,2-Dibromoethane (EDB) Duplicate (6111557-DUP1) Prepared: 21-Nov-06 Analyzed: 22-Nov-06 1,2-Dibromoethane (EDB) Analyte(s) Batch 6111573 - SW846 3510C	04.1 BRL 0.176 Source: SA54443-02 BRL Extract:	able Pet	µg/I µg/I µg/I roleum H y	0.0100 0.0100 0.0100 ydrocarbon	0.200 s - Quality Spike	Result BRL Control Source	88.0	Limits 50-150 %REC		Limit 30 RPD
Batch 6111557 - Microextr. by 5 Blank (6111557-BLK1) Prepared: 21-Nov-06 Analyzed: 22-Nov-06 ,2-Dibromoethane (EDB) CS (6111557-BS1) Prepared: 21-Nov-06 Analyzed: 22-Nov-06 ,2-Dibromoethane (EDB) Duplicate (6111557-DUP1) Prepared: 21-Nov-06 Analyzed: 22-Nov-06 ,2-Dibromoethane (EDB) Analyte(s) Batch 6111573 - SW846 3510C Blank (6111573-BLK1)	04.1 BRL 0.176 Source: SA54443-02 BRL Extract:	able Pet	µg/I µg/I µg/I roleum H y	0.0100 0.0100 0.0100 ydrocarbon	0.200 s - Quality Spike	Result BRL Control Source	88.0	Limits 50-150 %REC		Limit 30 RPD
Batch 6111557 - Microextr. by 5 Blank (6111557-BLK1) Prepared: 21-Nov-06 Analyzed: 22-Nov-06 J.2-Dibromoethane (EDB) CS (6111557-BS1) Prepared: 21-Nov-06 Analyzed: 22-Nov-06 J.2-Dibromoethane (EDB) Duplicate (6111557-DUP1) Prepared: 21-Nov-06 Analyzed: 22-Nov-06 J.2-Dibromoethane (EDB) Analyte(s) Batch 6111573 - SW846 3510C Blank (6111573-BLK1) Prepared: 21-Nov-06 Analyzed: 22-Nov-06	04.1 DRL 0.176 Source: SA54443-02 BRL Extract: Result	able Pet	µg/l µg/l roleum Hy Units	0.0100 0.0100 0.0100 ydrocarbon *RDL	0.200 s - Quality Spike	Result BRL Control Source	88.0	Limits 50-150 %REC		Limit 30 RPD
Batch 6111557 - Microextr. by 50 Blank (6111557-BLK1) Prepared: 21-Nov-06 Analyzed: 22-Nov-06 1,2-Dibromoethane (EDB) Analyte(s) Batch 6111573 - SW846 3510C Blank (6111573-BLK1) Prepared: 21-Nov-06 Analyzed: 22-Nov-06 Non-polar material (SGT-HEM)	04.1 BRL 0.176 Source: SA54443-02 BRL Extract:	able Pet	µg/I µg/I µg/I roleum H y	0.0100 0.0100 0.0100 ydrocarbon	0.200 s - Quality Spike	Result BRL Control Source	88.0	Limits 50-150 %REC		Limit 30 RPD
Batch 6111557 - Microextr. by 50 Blank (6111557-BLK1) Prepared: 21-Nov-06 Analyzed: 22-Nov-06 1,2-Dibromoethane (EDB) Prepared: 21-Nov-06 Analyzed: 22-Nov-06 1,2-Dibromoethane (EDB) Puplicate (6111557-DUP1) Prepared: 21-Nov-06 Analyzed: 22-Nov-06 1,2-Dibromoethane (EDB) Analyte(s) Batch 6111573 - SW846 3510C Blank (6111573-BLK1) Prepared: 21-Nov-06 Analyzed: 22-Nov-06 Non-polar material (SGT-HEM)	04.1 DRL 0.176 Source: SA54443-02 BRL Extract: Result	able Pet	µg/l µg/l roleum Hy Units	0.0100 0.0100 0.0100 ydrocarbon *RDL	0.200 s - Quality Spike	Result BRL Control Source	88.0	Limits 50-150 %REC		Limit 30 RPD
Analyte(s) Batch 6111557 - Microextr. by 5 Blank (6111557-BLK1) Prepared: 21-Nov-06 Analyzed: 22-Nov-06 1,2-Dibromoethane (EDB) LCS (6111557-BS1) Prepared: 21-Nov-06 Analyzed: 22-Nov-06 1,2-Dibromoethane (EDB) Duplicate (6111557-DUP1) Prepared: 21-Nov-06 Analyzed: 22-Nov-06 1,2-Dibromoethane (EDB) Analyte(s) Batch 6111573 - SW846 3510C Blank (6111573-BLK1) Prepared: 21-Nov-06 Analyzed: 22-Nov-06 Non-polar material (SGT-HEM) LCS (6111573-BS1) Prepared: 21-Nov-06 Analyzed: 22-Nov-06	04.1 DRL 0.176 Source: SA54443-02 BRL Extract: Result	able Pet	µg/l µg/l roleum Hy Units	0.0100 0.0100 0.0100 ydrocarbon *RDL	0.200 s - Quality Spike	Result BRL Control Source	88.0	Limits 50-150 %REC		Limit

Semivolatile Organic Compounds by GC - Quality Control

					Spike	Source		%REC		RPD
Analyte(s)	Result	Flag	Units	*RDL	Level	Result	%REC	Limits	RPD	Limit
Batch 6111490 - SW846 3535										
Blank (6111490-BLK1)										
Prepared & Analyzed: 21-Nov-06										
PCB 1016	BRL		μg/l	0.0200						
PCB 1221	BRL		μg/l	0.0200						
PCB 1232	BRL		μg/l	0.0200						
PCB 1242	BRL		μg/l	0.0200						
PCB 1248	BRL		μg/l	0.0200						
PCB 1254	BRL		μg/l	0.0200						
PCB 1260	BRL		μg/l	0.0200						
PCB 1262	BRL		μg/l	0.0200						
PCB 1268	BRL		μg/l	0.0200						
Surrogate: 4,4-DB-Octafluorobiphenyl (Sr)	0.0140		μg/l		0.0200		70.0	30-150		
Surrogate: Decachlorobiphenyl (Sr)	0.0240		μg/l		0.0200		120	30-150		
LCS (6111490-BS1)										
Prepared & Analyzed: 21-Nov-06										
PCB 1016	2.16		μg/l	0.200	2.50		86.4	50-114		
PCB 1260	2.82		μg/l	0.200	2.50		113	40-127		
Surrogate: 4,4-DB-Octafluorobiphenyl (Sr)	0.130		μg/l		0.200		65.0	30-150		
Surrogate: Decachlorobiphenyl (Sr)	0.250		μg/l		0.200		125	30-150		
LCS Dup (6111490-BSD1)										
Prepared & Analyzed: 21-Nov-06										
PCB 1016	2.13		μg/l	0.200	2.50		85.2	50-114	1.40	20
PCB 1260	2.78		μg/l	0.200	2.50		111	40-127	1.79	20
Surrogate: 4,4-DB-Octafluorobiphenyl (Sr)	0.130		μg/l		0.200		65.0	30-150		
Surrogate: Decachlorobiphenyl (Sr)	0.240		μg/l		0.200		120	30-150		

Semivolatile Organic Compounds by GCMS - Quality Control

Analyte(s)	Result	Flag	Units	*RDL	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
Batch 6111492 - SW846 3510C										
Blank (6111492-BLK1)										
Prepared & Analyzed: 21-Nov-06										
Acenaphthene	BRL		μg/l	5.00						
Acenaphthylene	BRL		μg/l	5.00						
Aniline	BRL		μg/l	5.00						
Anthracene	BRL		μg/l	5.00						
Atrazine	BRL		μg/l	5.00						
Azobenzene/Diphenyldiazine	BRL		μg/l	5.00						
Benzidine	BRL		μg/l	5.00						
Benzo (a) anthracene	BRL		μg/l	5.00						
Benzo (a) pyrene	BRL		μg/l	5.00						
Benzo (b) fluoranthene	BRL		μg/l	5.00						
Benzo (g,h,i) perylene	BRL		μg/l	5.00						
Benzo (k) fluoranthene	BRL		μg/l	5.00						
Benzoic acid	BRL		μg/l	5.00						
Benzyl alcohol	BRL		μg/l	5.00						
Bis(2-chloroethoxy)methane	BRL		μg/l	5.00						
Bis(2-chloroethyl)ether	BRL		μg/l	5.00						
Bis(2-chloroisopropyl)ether	BRL		μg/l	5.00						
Bis(2-ethylhexyl)phthalate	BRL		μg/l	5.00						
4-Bromophenyl phenyl ether	BRL		μg/l	5.00						
Butyl benzyl phthalate	BRL		μg/l	5.00						
Carbazole	BRL		μg/l	5.00						
4-Chloro-3-methylphenol	BRL		μg/l	5.00						
4-Chloroaniline	BRL		μg/l	5.00						
2-Chloronaphthalene	BRL		μg/l	5.00						
2-Chlorophenol	BRL		μg/l	5.00						
4-Chlorophenyl phenyl ether	BRL		μg/l	5.00						
Chrysene	BRL		μg/l	5.00						
Dibenzo (a,h) anthracene	BRL		μg/l	5.00						
Dibenzofuran	BRL		μg/l	5.00						
1,2-Dichlorobenzene	BRL		μg/l	5.00						
1,3-Dichlorobenzene	BRL		μg/l	5.00						
1,4-Dichlorobenzene	BRL		μg/l	5.00						
3,3´-Dichlorobenzidine	BRL		μg/l	5.00						
2,4-Dichlorophenol	BRL		μg/l	5.00						
Diethyl phthalate	BRL		μg/l	5.00						
Dimethyl phthalate	BRL		μg/l	5.00						
2,4-Dimethylphenol	BRL		μg/l	5.00						
Di-n-butyl phthalate	BRL		μg/l	5.00						
4,6-Dinitro-2-methylphenol	BRL		μg/l	5.00						
2,4-Dinitrophenol	BRL		μg/l	5.00						
2,4-Dinitrotoluene	BRL		μg/l	5.00						
2,6-Dinitrotoluene	BRL		μg/l	5.00						
Di-n-octyl phthalate	BRL		μg/l	5.00						
Fluoranthene	BRL		μg/l	5.00						
Fluorene	BRL		μg/l	5.00						
Hexachlorobenzene	BRL		μg/l	5.00						
Hexachlorobutadiene	BRL		μg/l	5.00						
Hexachlorocyclopentadiene	BRL		μg/l	5.00						
Hexachloroethane	BRL		μg/l	5.00						
Indeno (1,2,3-cd) pyrene	BRL		μg/l	5.00						
Isophorone	BRL		μg/l	5.00						
2-Methylnaphthalene	BRL		μg/l	5.00						
2-Methylphenol	BRL		μg/l	5.00						

Semivolatile Organic Compounds by GCMS - Quality Control

Analyte(s)	Result	Flag	Units	*RDL	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
Batch 6111492 - SW846 3510C	1100011	1 1005		102	20,01	Trobuit	, , , ,			2
Blank (6111492-BLK1)										
Prepared & Analyzed: 21-Nov-06										
3,4-Methylphenol	BRL		μg/l 	10.0						
Naphthalene	BRL		μg/l	5.00						
2-Nitroaniline	BRL		μg/l	5.00						
3-Nitroaniline	BRL		μg/l	5.00						
4-Nitroaniline	BRL		μg/l	20.0						
Nitrobenzene	BRL		μg/l 	5.00						
2-Nitrophenol	BRL		μg/l	5.00						
4-Nitrophenol	BRL		μg/l	20.0						
N-Nitrosodimethylamine	BRL		μg/l	5.00						
N-Nitrosodi-n-propylamine	BRL		μg/l	5.00						
N-Nitrosodiphenylamine	BRL		μg/l	5.00						
Pentachlorophenol	BRL		μg/l	20.0						
Phenanthrene	BRL		μg/l	5.00						
Phenol	BRL		μg/l	5.00						
Pyrene	BRL		μg/l	5.00						
Pyridine	BRL		μg/l	5.00						
1-Methylnaphthalene	BRL		μg/l	5.00						
1,2,4-Trichlorobenzene	BRL		μg/l	5.00						
2,4,5-Trichlorophenol	BRL		μg/l	5.00						
2,4,6-Trichlorophenol	BRL		μg/l	5.00						
Surrogate: 2-Fluorobiphenyl	92.5		μg/l		100		92.5	30-130		
Surrogate: 2-Fluorophenol Surrogate: Nitrobenzene-d5	102 88.3		μg/l		100 100		102 88.3	15-110 30-130		
Surrogate: Phenol-d5	105		μg/l μg/l		100		105	15-110		
Surrogate: Terphenyl-dl4	97.0		μg/l		100		97.0	30-130		
Surrogate: 2,4,6-Tribromophenol	107		μg/l		100		107	15-110		
LCS (6111492-BS1)										
Prepared & Analyzed: 21-Nov-06										
Acenaphthene	79.1		μg/l	5.00	100		79.1	40-130		
Acenaphthylene	114		μg/l	5.00	100		114	40-130		
Aniline	75.7		μg/l	5.00	100		75.7	40-130		
Anthracene	93.5		μg/l	5.00	100		93.5	40-130		
Atrazine	113		μg/l	5.00	100		113	0-200		
Azobenzene/Diphenyldiazine	82.2		μg/l	5.00	100		82.2	40-130		
Benzidine	0.590	QC2	μg/l	5.00	100		0.590	40-130		
Benzo (a) anthracene	78.2		μg/l	5.00	100		78.2	40-130		
Benzo (a) pyrene	87.4		μg/l	5.00	100		87.4	40-130		
Benzo (b) fluoranthene	89.6		μg/l	5.00	100		89.6	40-130		
Benzo (g,h,i) perylene	86.3		μg/l	5.00	100		86.3	40-130		
Benzo (k) fluoranthene	68.4		μg/l	5.00	100		68.4	40-130		
Benzoic acid	82.0		μg/l	5.00	100		82.0	40-130		
Benzyl alcohol	62.0		μg/l	5.00	100		62.0	40-130		
Bis(2-chloroethoxy)methane	80.5		μg/l	5.00	100		80.5	40-130		
Bis(2-chloroethyl)ether	74.3		μg/l	5.00	100		74.3	40-130		
Bis(2-chloroisopropyl)ether	73.1		μg/l	5.00	100		73.1	40-130		
Bis(2-ethylhexyl)phthalate	78.4		μg/l	5.00	100		78.4	40-130		
4-Bromophenyl phenyl ether	96.8		μg/l	5.00	100		96.8	40-130		
Butyl benzyl phthalate	77.8		μg/l	5.00	100		77.8	40-130		
Carbazole	119		μg/l	5.00	100		119	40-130		
4-Chloro-3-methylphenol	85.8		μg/l	5.00	100		85.8	40-130		
4-Chloroaniline	74.6		μg/l	5.00	100		74.6	40-130		
2-Chloronaphthalene	74.3		μg/l	5.00	100		74.3	40-130		
			r o							

Semivolatile Organic Compounds by GCMS - Quality Control

Analyte(s)	Result	Flag	Units	*RDL	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
Batch 6111492 - SW846 3510C	Result	1145	Cinto	RDE	Ecver	resur	/ UKEC	Limits	ППВ	Ziiiit
LCS (6111492-BS1)										
Prepared & Analyzed: 21-Nov-06	00.0			5.00	400		00.0	40.400		
4-Chlorophenyl phenyl ether	82.8		μg/l	5.00	100		82.8	40-130		
Chrysene	78.2		μg/l	5.00	100		78.2	40-130		
Dibenzo (a,h) anthracene	88.2		μg/l	5.00	100		88.2	40-130		
Dibenzofuran	75.0		μg/l	5.00	100		75.0	40-130		
1,2-Dichlorobenzene	65.5		μg/l	5.00	100		65.5	40-130		
1,3-Dichlorobenzene	56.2		μg/l	5.00	100		56.2	40-130		
1,4-Dichlorobenzene	57.0		μg/l	5.00	100		57.0	40-130		
3,3´-Dichlorobenzidine	90.7		μg/l	5.00	100		90.7	40-130		
2,4-Dichlorophenol	80.5		μg/l	5.00	100		80.5	40-130		
Diethyl phthalate	89.8		μg/l	5.00	100		89.8	40-130		
Dimethyl phthalate	90.0		μg/l	5.00	100		90.0	40-130		
2,4-Dimethylphenol	78.6		μg/l	5.00	100		78.6	40-130		
Di-n-butyl phthalate	71.8		μg/l	5.00	100		71.8	40-130		
4,6-Dinitro-2-methylphenol	88.9		μg/l	5.00	100		88.9	40-130		
2,4-Dinitrophenol	86.1		μg/l	5.00	100		86.1	40-130		
2,4-Dinitrotoluene	93.5		μg/l	5.00	100		93.5	40-130		
2,6-Dinitrotoluene	101		μg/l	5.00	100		101	40-130		
Di-n-octyl phthalate	86.2		μg/l	5.00	100		86.2	40-130		
Fluoranthene	80.6		μg/l	5.00	100		80.6	40-130		
Fluorene	79.4		μg/l	5.00	100		79.4	40-130		
Hexachlorobenzene	92.2		μg/l	5.00	100		92.2	40-130		
Hexachlorobutadiene	79.1		μg/l	5.00	100		79.1	40-130		
Hexachlorocyclopentadiene	75.7		μg/l	5.00	100		75.7	40-130		
Hexachloroethane	62.4		μg/l	5.00	100		62.4	40-130		
Indeno (1,2,3-cd) pyrene	88.7		μg/l	5.00	100		88.7	40-130		
Isophorone	75.8		μg/l	5.00	100		75.8	40-130		
2-Methylnaphthalene	73.5		μg/l	5.00	100		73.5	40-130		
2-Methylphenol	67.6		μg/l	5.00	100		67.6	40-130		
3,4-Methylphenol	78.6		μg/l	10.0	100		78.6	40-130		
Naphthalene	69.9		μg/l	5.00	100		69.9	40-130		
2-Nitroaniline	84.0		μg/l	5.00	100		84.0	40-130		
3-Nitroaniline	78.8		μg/l	5.00	100		78.8	40-130		
4-Nitroaniline	100		μg/l	20.0	100		100	40-130		
Nitrobenzene	71.4		μg/l	5.00	100		71.4	40-130		
2-Nitrophenol	81.6		μg/l	5.00	100		81.6	40-130		
4-Nitrophenol	48.6		μg/l	20.0	100		48.6	40-130		
N-Nitrosodimethylamine	60.6		μg/l	5.00	100		60.6	40-130		
N-Nitrosodi-n-propylamine	81.9		μg/l	5.00	100		81.9	40-130		
N-Nitrosodiphenylamine	92.5		μg/l	5.00	100		92.5	40-130		
Pentachlorophenol	114		μg/l	20.0	100		114	40-130		
Phenanthrene	82.0		μg/l	5.00	100		82.0	40-130		
Phenol	68.1		μg/l	5.00	100		68.1	40-130		
Pyrene	64.9		μg/l	5.00	100		64.9	40-130		
Pyridine	86.4		μg/l	5.00	100		86.4	40-130		
1,2,4-Trichlorobenzene	70.4		μg/l	5.00	100		70.4	40-130		
1-Methylnaphthalene	75.8		μg/l	5.00	100		75.8	40-140		
2,4,5-Trichlorophenol	99.2		μg/l	5.00	100		99.2	40-130		
2,4,6-Trichlorophenol	85.6		μg/l	5.00	100		85.6	40-130		
Surrogate: 2-Fluorobiphenyl	86.5		μg/l		100		86.5	30-130		
Surrogate: 2-Fluorophenol	68.6		μg/l		100		68.6	15-110		
Surrogate: Nitrobenzene-d5	84.6		μg/l		100		84.6	30-130		
Surrogate: Phenol-d5 Surrogate: Terphenyl-dl4	67.3 79.8		μg/l μg/l		100 100		67.3 79.8	15-110 30-130		
Surrogate: 2,4,6-Tribromophenol	79.8 112	SGC	μg/l		100		79.0 112	15-110		

Total Metals by EPA 6000/7000 Series Methods - Quality Control

Analyte(s)	Result	Flag	Units	*RDL	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
Batch 6111611 - SW846 3005A	resuit	111111111111111111111111111111111111111		102	20101	Tessure	, vitile			
Blank (6111611-BLK1)										
Prepared & Analyzed: 22-Nov-06										
Zinc	BRL		mg/l	0.0025						
Nickel	BRL		mg/l	0.0025						
Iron	0.0052	QB1	mg/l	0.0025						
Arsenic	BRL		mg/l	0.0020						
Copper	BRL		mg/l	0.0025						
Chromium	BRL		mg/l	0.0025						
LCS (6111611-BS1)										
Prepared & Analyzed: 22-Nov-06										
Iron	0.268		mg/l	0.0025	0.250		107	85-115		
Nickel	0.276		mg/l	0.0025	0.250		110	85-115		
Zinc	0.253		mg/l	0.0025	0.250		101	85-115		
Chromium	0.263		mg/l	0.0025	0.250		105	85-115		
Copper	0.271		mg/l	0.0025	0.250		108	85-115		
Arsenic	0.262		mg/l	0.0020	0.250		105	85-115		
LCS Dup (6111611-BSD1)										
Prepared & Analyzed: 22-Nov-06										
Nickel	0.272		mg/l	0.0025	0.250		109	85-115	1.46	20
Zinc	0.250		mg/l	0.0025	0.250		100	85-115	1.19	20
Iron	0.263		mg/l	0.0025	0.250		105	85-115	1.88	20
Chromium	0.258		mg/l	0.0025	0.250		103	85-115	1.92	20
Arsenic	0.260		mg/l	0.0020	0.250		104	85-115	0.766	20
Copper	0.266		mg/l	0.0025	0.250		106	85-115	1.86	20
<u>Duplicate (6111611-DUP1)</u>	Source: SA54478-07									
Prepared & Analyzed: 22-Nov-06										
Iron	78.1		mg/l	0.0025		72.0			8.13	20
Zinc	3.44		mg/l	0.0025		3.14			9.12	20
Nickel	0.0998		mg/l	0.0025		0.0926			7.48	20
Copper	0.840		mg/l	0.0025		0.800			4.88	20
Arsenic	0.0259		mg/l	0.0020		0.0236			9.29	20
Chromium	0.205		mg/l	0.0025		0.190			7.59	20
Matrix Spike (6111611-MS1)	Source: SA54478-07									
Prepared & Analyzed: 22-Nov-06										
Iron	74.3	QM2	mg/l	0.0025	0.250	72.0	920	75-125		
Nickel	0.328	01407	mg/l	0.0025	0.250	0.0926	94.2	75-125		
Zinc	3.47	QM4X	mg/l	0.0025	0.250	3.14	132	75-125		
Chromium	0.427 1.01		mg/l	0.0025	0.250	0.190	94.8	75-125 75-125		
Copper Arsenic	0.252		mg/l mg/l	0.0025 0.0020	0.250 0.250	0.800 0.0236	84.0 91.4	75-125 75-125		
			mg/I	0.0020	0.230	0.0200	∂1. 1	7 J-12U		
Matrix Spike Dup (6111611-MSD1)	Source: SA54478-07									
Prepared & Analyzed: 22-Nov-06		 -								
Iron	73.4	QM2	mg/l	0.0025	0.250	72.0	560	75-125	1.22	20
Zinc	3.36		mg/l	0.0025	0.250	3.14	88.0	75-125	3.22	20
Nickel	0.322 0.991		mg/l	0.0025 0.0025	0.250 0.250	0.0926 0.800	91.8	75-125 75-125	1.85 1.90	20 20
Copper Chromium	0.428		mg/l mg/l	0.0025	0.250	0.800	76.4 95.2	75-125 75-125	0.234	20
Arsenic	0.428		mg/l	0.0023	0.250	0.0236	89.8	75-125 75-125	1.60	20
				3.00=0	J	5.5200	55.5	. 5 . = 0		
Proposed & Apply and 100 Nov 00	Source: SA54478-07									
Prepared & Analyzed: 22-Nov-06	0.50	01414	/1	0.0005	0.050	0.44	470	00.100		
Zinc	3.58 68.4	QM4X QM2	mg/l	0.0025	0.250	3.14	176	80-120		
Iron	00.4	QIVIZ	mg/l	0.0025	0.250	72.0	NR	80-120		

$Total\ Metals\ by\ EPA\ 6000/7000\ Series\ Methods\ -\ Quality\ Control$

					Spike	Source		%REC		RPD
Analyte(s)	Result	Flag	Units	*RDL	Level	Result	%REC	Limits	RPD	Limit
Batch 6111616 - SW846 3005A										
Blank (6111616-BLK1)										
Prepared & Analyzed: 22-Nov-06										
Lead	0.0002	QB1	mg/l	0.00002						
Selenium	BRL		mg/l	0.0001						
Cadmium	BRL		mg/l	0.00002						
Silver	BRL		mg/l	0.0008						
LCS (6111616-BS1)										
Prepared & Analyzed: 22-Nov-06										
Lead	0.299	QC1	mg/l	0.0012	0.250		120	85-115		
Selenium	0.320	QC3	mg/l	0.0012	0.250		128	85-115		
Cadmium	0.311	QC3	mg/l	0.0002	0.250		124	85-115		
Silver	0.271		mg/l	0.0012	0.250		108	85-115		
LCS Dup (6111616-BSD1)										
Prepared & Analyzed: 22-Nov-06										
Lead	0.262		mg/l	0.0012	0.250		105	85-115	13.2	20
Silver	0.239		mg/l	0.0012	0.250		95.6	85-115	12.5	20
Cadmium	0.265		mg/l	0.0002	0.250		106	85-115	16.0	20
Selenium	0.276		mg/l	0.0012	0.250		110	85-115	14.8	20
<u>Duplicate (6111616-DUP1)</u>	Source: SA54478-07									
Prepared & Analyzed: 22-Nov-06										
Lead	0.435		mg/l	0.0002		0.478			9.42	20
Selenium	0.0019		mg/l	0.0012		0.0022			14.6	20
Silver	0.0010	J,QR1	mg/l	0.0075		0.0006			50.0	20
Cadmium	0.0085		mg/l	0.0002		0.0091			6.82	20
Matrix Spike (6111616-MS1)	Source: SA54478-07	QM7								
Prepared & Analyzed: 22-Nov-06										
Lead	0.601		mg/l	0.0002	0.250	0.478	49.2	70-130		
Selenium	0.219		mg/l	0.0012	0.250	0.0022	86.7	70-130		
Silver	0.145	QM7	mg/l	0.0075	0.250	0.0006	57.8	70-130		
Cadmium	0.257		mg/l	0.0002	0.250	0.0091	99.2	70-130		
Matrix Spike Dup (6111616-MSD1)	Source: SA54478-07									
Prepared & Analyzed: 22-Nov-06										
Lead	0.656		mg/l	0.0002	0.250	0.478	71.2	70-130	8.75	20
Cadmium	0.279		mg/l	0.0002	0.250	0.0091	108	70-130	8.21	20
Selenium	0.242		mg/l	0.0012	0.250	0.0022	95.9	70-130	9.98	20
Silver	0.0810	M7, QR	mg/l	0.0075	0.250	0.0006	32.2	70-130	56.6	20

Total Metals by EPA 200 Series Methods - Quality Control

					2 7	~		A/DEC		n n n
					Spike	Source		%REC		RPD
Analyte(s)	Result	Flag	Units	*RDL	Level	Result	%REC	Limits	RPD	Limit
Batch 6111612 - EPA200/SW7	000 Series									
Blank (6111612-BLK1)										
Prepared & Analyzed: 22-Nov-06										
Mercury	BRL		mg/l	0.00020						
LCS (6111612-BS1)										
Prepared & Analyzed: 22-Nov-06										
Mercury	0.00234		mg/l	0.00020	0.00250		93.6	80-120		
Duplicate (6111612-DUP1)	Source: SA54478-07									
Prepared & Analyzed: 22-Nov-06										
Mercury	0.00010	J,QR1	mg/l	0.00020		0.00020			66.7	20
Matrix Spike (6111612-MS1)	Source: SA54478-07									
Prepared & Analyzed: 22-Nov-06										
Mercury	0.00247		mg/l	0.00020	0.00250	0.00020	90.8	75-125		
Matrix Spike Dup (6111612-MSD1)	Source: SA54478-07									
Prepared & Analyzed: 22-Nov-06										
Mercury	0.00273		mg/l	0.00020	0.00250	0.00020	101	75-125	10.0	20
Post Spike (6111612-PS1)	Source: SA54478-07									
Prepared & Analyzed: 22-Nov-06										
Mercury	0.00321		mg/l	0.00020	0.00250	0.00020	120	75-125		
			-							

General Chemistry Parameters - Quality Control

Analyte(s)	Result	Flag	Units	*RDL	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
Batch 6111586 - General Prepara	ation									
Blank (6111586-BLK1) Prepared & Analyzed: 21-Nov-06 Total Suspended Solids	BRL		mg/l	5.00						
<u>Duplicate (6111586-DUP1)</u> Prepared & Analyzed: 21-Nov-06 Total Suspended Solids	Source: SA54451-01 9.00	QR1	mg/l	5.00		7.00			25.0	20
Reference (6111586-SRM1) Prepared & Analyzed: 21-Nov-06	9.00	QIVI	mg/i	3.00		7.00			23.0	20
Total Suspended Solids	94.0		mg/l	10.0	86.0		109	90-110		
Batch 6111588 - General Prepara	ation									
Blank (6111588-BLK1) Prepared & Analyzed: 21-Nov-06 Hexavalent Chromium	BRL		mg/l	0.005						
LCS (6111588-BS1) Prepared & Analyzed: 21-Nov-06	DICE		mg/i	0.003						
Hexavalent Chromium	0.055		mg/l	0.005	0.0500		110	90-110		
Duplicate (6111588-DUP1) Prepared & Analyzed: 21-Nov-06	Source: SA54479-01	0.01								
Hexavalent Chromium Matrix Spike (6111588-MS1)	0.007 Source: SA54479-01	QR1	mg/l	0.005		0.005			33.3	20
Prepared & Analyzed: 21-Nov-06 Hexavalent Chromium	0.056		mg/l	0.005	0.0500	0.005	102	80-120		
Reference (6111588-SRM1) Prepared & Analyzed: 21-Nov-06										
Hexavalent Chromium	0.026		mg/l	0.005	0.0250		104	85-115		
Batch 6111589 - General Prepara	ation									
Blank (6111589-BLK1) Prepared & Analyzed: 21-Nov-06 Total Residual Chlorine	BRL		mg/l	0.020						
LCS (6111589-BS1) Prepared & Analyzed: 21-Nov-06			9							
Total Residual Chlorine	0.046		mg/l	0.020	0.0500		92.0	90-110		
Duplicate (6111589-DUP1) Prepared & Analyzed: 21-Nov-06	Source: SA54478-07		/I	0.400		0.555			10.5	00
Total Residual Chlorine Matrix Spike (6111589-MS1)	0.655 Source: SA54478-07		mg/l	0.100		0.555			16.5	20
Prepared & Analyzed: 21-Nov-06 Total Residual Chlorine	0.780		mg/l	0.100	0.250	0.555	90.0	80-120		
Reference (6111589-SRM1) Prepared & Analyzed: 21-Nov-06										
Total Residual Chlorine	0.095		mg/l	0.020	0.0996		95.4	85-115		
Batch 6111611 - SW846 3005A										
Blank (6111611-BLK1) Prepared & Analyzed: 22-Nov-06 Trivalent Chromium	BRL		mg/l	0.0050						
Duplicate (6111611-DUP1)	Source: SA54478-07									

General Chemistry Parameters - Quality Control

					Spike	Source		%REC		RPD
Analyte(s)	Result	Flag	Units	*RDL	Level	Result	%REC	Limits	RPD	Limit
Batch 6111611 - SW846 3005A Prepared & Analyzed: 22-Nov-06			4	0.0050		0.400			7.50	99
Trivalent Chromium	0.205		mg/l	0.0050		0.190			7.59	20
Post Spike (6111611-PS1) Prepared & Analyzed: 22-Nov-06 Trivalent Chromium	Source: SA54478-07 0.798		mg/l	0.0050		0.190		0-200		
			mg/i	0.0030		0.190		0-200		
Batch 6111673 - General Prep	aration									
Blank (6111673-BLK1)										
Prepared & Analyzed: 22-Nov-06 Cyanide (total)	BRL		mg/l	0.0100						
	BILE		g.i	0.0100						
Blank (6111673-BLK2) Prepared & Analyzed: 22-Nov-06										
Cyanide (total)	BRL		mg/l	0.0100						
LCS (6111673-BS1)			9.							
Prepared & Analyzed: 22-Nov-06										
Cyanide (total)	0.280		mg/l	0.0100	0.300		93.3	90-110		
LCS (6111673-BS2)										
Prepared & Analyzed: 22-Nov-06										
Cyanide (total)	0.282		mg/l	0.0100	0.300		94.0	90-110		
Matrix Spike (6111673-MS1)	Source: SA54277-10									
Prepared & Analyzed: 22-Nov-06										
Cyanide (total)	0.269		mg/l	0.0100	0.300	BRL	89.7	75-125		
Matrix Spike (6111673-MS2)	Source: SA54433-02									
Prepared & Analyzed: 22-Nov-06										
Cyanide (total)	0.275		mg/l	0.0100	0.300	BRL	91.7	75-125		
Matrix Spike Dup (6111673-MSD1)	Source: SA54277-10									
Prepared & Analyzed: 22-Nov-06										
Cyanide (total)	0.285		mg/l	0.0100	0.300	BRL	95.0	75-125	5.78	20
Matrix Spike Dup (6111673-MSD2)	Source: SA54433-02									
Prepared & Analyzed: 22-Nov-06										
Cyanide (total)	0.271		mg/l	0.0100	0.300	BRL	90.3	75-125	1.47	20
Reference (6111673-SRM1)										
Prepared & Analyzed: 22-Nov-06	0.000			0.0400	0.070		07.0	75 1 101 0		
Cyanide (total)	0.323		mg/l	0.0100	0.370		87.3	75.1-124.9		

Notes and Definitions

FP	Field Preserved
HT2	This sample was received outside the EPA recommended holding time for the analysis specified.
QB1	The method blank contains analyte at a concentration above the MRL; however, concentration is less than 10% of the sample result, which is negligible according to method criteria.
QC1	Analyte out of acceptance range.
QC2	Analyte out of acceptance range in QC spike but no reportable concentration present in sample.
QC3	The spike recovery is outside acceptable limits for the LCS. The batch was accepted based upon the MS and/or MSD meeting the LCS limits criteria.
QM2	The RPD and/or percent recovery for this QC spike sample cannot be accurately calculated due to the high concentration of analyte inherent in the sample.
QM4X	The spike recovery was outside of QC acceptance limits for the MS, MSD and/or PS due to analyte concentration at 4 times or greater the spike concentration. The QC batch was accepted based on LCS and/or LCSD recoveries within the acceptance limits.
QM7	The spike recovery was outside acceptance limits for the MS and/or MSD. The batch was accepted based on acceptable LCS recovery.
QR1	Analyses are not controlled on RPD values from sample concentrations less than 10 times the reporting limit. QC batch accepted based on LCS and/or LCSD QC results.
QR5	RPD out of acceptance range.
SGC	Surrogate recovery outside of control limits. The data was accepted based on valid recovery of the remaining surrogate.
BRL	Below Reporting Limit - Analyte NOT DETECTED at or above the reporting limit
dry	Sample results reported on a dry weight basis
NR	Not Reported
RPD	Relative Percent Difference

A plus sign (+) in the Method Reference column indicates the method is not accredited by NELAC.

Interpretation of Total Petroleum Hydrocarbon Report

Petroleum identification is determined by comparing the GC fingerprint obtained from the sample with a library of GC fingerprints obtained from analyses of various petroleum products. Possible match categories are as follows:

Gasoline - includes regular, unleaded, premium, etc.

Fuel Oil #2 - includes home heating oil, #2 fuel oil, and diesel

Fuel Oil #4 - includes #4 fuel oil

Fuel Oil #6 - includes #6 fuel oil and bunker "C" oil

Motor Oil - includes virgin and waste automobile oil

Ligroin - includes mineral spirits, petroleum naphtha, vm&p naphtha

Aviation Fuel - includes kerosene, Jet A and JP-4

Other Oil - includes lubricating and cutting oil, and silicon oil

At times, the unidentified petroleum product is quantified using a calibration that most closely approximates the distribution of compounds in the sample. When this occurs, the result is qualified as *TPH (Calculated as).

<u>Laboratory Control Sample (LCS)</u>: A known matrix spiked with compound(s) representative of the target analytes, which is used to document laboratory performance.

Matrix Duplicate: An intra-laboratory split sample which is used to document the precision of a method in a given sample matrix.

<u>Matrix Spike</u>: An aliquot of a sample spiked with a known concentration of target analyte(s). The spiking occurs prior to sample preparation and analysis. A matrix spike is used to document the bias of a method in a given sample matrix.

<u>Method Blank</u>: An analyte-free matrix to which all reagents are added in the same volumes or proportions as used in sample processing. The method blank should be carried through the complete sample preparation and analytical procedure. The method blank is used to document contamination resulting from the analytical process.

Method Detection Limit (MDL): The minimum concentration of a substance that can be measured and reported with 99% confidence that the analyte concentration is greater than zero and is determined from analysis of a sample in a given matrix type containing the analyte.

Reportable Detection Limit (RDL): The lowest concentration that can be reliably achieved within specified limits of precision and accuracy during routine laboratory operating conditions. For many analytes the RDL analyte concentration is selected as the lowest non-zero standard in the calibration curve. While the RDL is approximately 5 to 10 times the MDL, the RDL for each sample takes into account the sample volume/weight, extract/digestate volume, cleanup procedures and, if applicable, dry weight correction. Sample RDLs are highly matrix-dependent.

<u>Surrogate</u>: An organic compound which is similar to the target analyte(s) in chemical composition and behavior in the analytical process, but which is not normally found in environmental samples. These compounds are spiked into all blanks, standards, and samples prior to analysis. Percent recoveries are calculated for each surrogate.

Validated by: Hanibal C. Tayeh, Ph.D. Nicole Brown

The following outlines the condition of all VPH samples contained within this report upon laboratory receipt. ☐ Soil ☐ Sediment □ Other Matrix ☐ Aqueous ☐ Satisfactory □ Leaking □ Broken Containers □ N/A □ pH>2 Aqueous □ pH≤2 Comment: (acid-preserved) Sample □ N/A □ Samples not received in Methanol or air-tight container ml Methanol/g soil Soil or Preservative Sediment □ 1:1 +/-25% ☐ Samples received in Methanol: □ covering soil/sediment ☐ Other: □ not covering soil/sediment ☐ Samples received in air-tight container: °C ☐ Received on ice \square Received at 4 ± 2 °C ☐ Other: Temperature Were all QA/QC procedures followed as required by the VPH method? Yes Were any significant modifications made to the VPH method as specified in section 11.3? No *see below Were all performance/acceptance standards for required QA/QC procedures achieved? Yes * Yes, if PID and FID surrogate recoveries are listed as n/a, then that sample was run via GCMS using all QC criteria specified in the method I attest that based upon my inquiry of those individuals immediately responsible for obtaining the information, the material contained in this report is, to the best of my knowledge and belief, accurate and complete. Authorized by:

Hanibal C. Tayeh, Ph.D. President/Laboratory Director

MADEP MCP ANALYTICAL METHOD REPORT CERTIFICATION FORM

MADEP RTN ¹ :											
This form provides certifications for the following Spectrum Analytical, Inc. work order #: SA54478											
Matri	ix										
MCP SW-846 Methods Used		□ 8260B	□ 8151A	□ 8330	□ 6010B	□ 7470A/1A					
		□ 8270C	□ 8081A	□ VPH	□ 6020	□ _{9014M} ²					
	□ 8082 □ 8021B □ EPH □ 7000S ³ □ 7196A										
 List Release Tracking Number (RTN), if known M - SW-846 Method 9014 or MADEP Physiologically Available Cyanide (PAC) Method S - SW-846 Methods 7000 Series List individual method and analyte 											
An affirmative response to questions A, B, C and D is required for "Presumptive Certainty" status											
A	Were all samples received by the laboratory in a condition consistent with that described on the Chain of Custody documentation for the data set?										
В	Were all QA/QC procedures required for the specified analytical method(s) included in this report followed, including the requirement to note and discuss in a narrative QC data that did not meet appropriate performance standards or guidelines?										
С	Does the data included in this report meet all the analytical requirements for "Presumptive Certainty", as described in Section 2.0 (a), (b), (c) and (d) of the MADEP document CAM VII A, "Quality Assurance and Quality Control Guidelines for the Acquisition and Reporting of Analytical Data"?										
D	D <u>VPH and EPH methods only</u> : Was the VPH or EPH method conducted without significant modifications (see Section 11.3 of respective methods)?										
		A response to	questions E and F	below is required f	or "Presumptive Ce	rtainty" status	•				
E	E Were all analytical QC performance standards and recommendations for the specified methods achieved?										
F	Were results for all analyte-list compounds/elements for the specified method(s) reported? ☐ Yes ☐ No										
	All negative responses are addressed in a case narrative on the cover page of this report.										
I, the undersigned, attest under the pains and penalties of perjury that, based upon my personal inquiry of those responsible for obtaining the information, the material contained in this analytical report is, to the best of my knowledge and belief, accurate and complete. Hanibal C. Tayeh, Ph.D. President/Laboratory Director Date: 11/27/2006											

CHAIN OF CUSTODY RECORD

Page 1 of 1

5954478m

Special Handling:
☐ Standard TAT - 7 to 10 business days

Rush TAT - Date Needed: 11/22 06

All TATs subject to laboratory approval.

Min. 24-hour notification needed for rushes.

Samples disposed of after 60 days unless otherwise instructed.

Report To: SCS Wakefield GOT North Ave., Suite II		Invoid	Invoice To: 808 Agawam								-	Project No.: 95 - 207351.00										
	4, MA 01880	11 3										-	Site	Nan	ie:	New 27	Ne	-+- 1	ort.	Are, Sta	te: MA	
Project Mgr.: Crasa Ellis				P.O. No.: 95-207351 RQN: 003									Sampler(s): Tobe worting									
	HCl 3=H ₂ SO ₄ 4 NaHSO ₄ 9=			oie Ac	id			Co	ntain	ers:					Anal	yses:				QA Report (check if		
	Water GW=Grou Surface Water SO X2=		udge A=Air			ve	Vials	# of Amber Glass	# of Clear Glass				volchles by switte	PA SOR	11c3 by	SPA GOS			C,Cr+6	Provide MA DEF Provide CT DPH QA/QC Rep	RCP Report orting Level	
G=Grab C=Composite						Preservative	YO.	mpe	lear	lastic	20		les l	M	1 clas	5	1064	2	THE	Standard No QC Other		
Lab Id:	Sample Id:	Date:	Time:	Type	Matrix	Prese	# of VOA Vials	# of A	# of C	# of Plastic	Granide	YPH	veloh	EDB P	Sent volonies is	PCB3 by EPPA	HAL	Metals	T-35, TM.	State specific rep	orting standards:	
54478-01	TRIP BLANK	1120100	_	G	CW	2	1					*										
1 - 02	MW-1		1200	1	1	2	3					×										
- B	MW-3		1100			2	3					×			3							
04	MW-101		1030			2	3					×										
-05	MW-102		1000			2	3			1		×			200							
06	MW-103		1130			2	3					×										
-01	MW-2		1230			24,4	5 8	3		3	×	×	×	×	×	×	×	×	×			
		V		V	V	D .12	- /	111				10000		D					100000	5.	m:	
☐ Fax results	when available to (_)。						shed l			-		1	1	teceiv	ea b	y:	100 miles 700 miles		Date:	Time:	
☑ E-mail to _	cells Cecs co	mult.co	2		Ta	zer	801	han	-	5	-	-	K	W	W	1				11/2/106	1240	
	receipt: Diced DA	ambient □°C	6																			

CHAIN OF CUSTODY RECORD

Page ______ of _____

Special Handling:

☐ Standard TAT - 7 to 10 business days

Rush TAT - Date Needed: 11/22/06
- All TATs subject to laboratory approval.

Min. 24-hour notification needed for rushes.

Samples disposed of after 60 days unless otherwise instructed.

Project No.: 95 - 204 351 00 0 Report To: SCS Wakefield Invoice To: ECS Agawam GOT NOTH Ave., Suste 11 Site Name: Newport Due. Walefield, MA 01880 auther Location: 627 Newport Aco, State: MA Sampler(s): ToSchoming Project Mgr.: Crata Ellis P.O. No.: 95-207351 RON: 003 1=Na2S2O3 2=HCl 3=H2SO4 4=HNO3 5=NaOH 6=Ascorbic Acid Containers: Analyses: OA Reporting Notes: 7=CH₃OH 8= NaHSO₄ 9=_______ 10=____ (check if needed) SDB by SPA 50%)
SW346 8240
PCB3 by SPA GOS Provide MA DEP MCP CAM Report DW=Drinking Water GW=Groundwater WW=Wastewater voichles by switte ☐ Provide CT DPH RCP Report O=Oil SW= Surface Water SO=Soil SL=Sludge A=Air # of VOA Vials # of Clear Glass TOS THCIC X1=_____X2=____X3=___ QA/QC Reporting Level 6967 ☑ Standard ☐ No QC G=Grab C=Composite Metals ☐ Other Matrix State specific reporting standards: Lab Id: Sample Id: Date: Time: G GW 2 TRIP BLANK 11/20/00 3 MW-1 1200 MW-3 3 1100 MW-101 1030 2 × MW-102 1000 × MW-103 1130 101 2145 8 3 MW-2 1230 Relinquished by: Received by: Time: ☐ Fax results when available to (). Jaga Schan 11/2/106 DE-mail to celles cecs consult, com EDD Format